Two-State Quantum Systems Revisited: A Clifford Algebra Approach

被引:0
作者
Pedro Amao
Hernan Castillo
机构
[1] Pontificia Universidad Católica del Perú,Departamento de Ciencias, Sección Física
来源
Advances in Applied Clifford Algebras | 2021年 / 31卷
关键词
Clifford algebras; Geometric algebra; Two-state quantum systems; Primary 81V45; Secondary 15A66;
D O I
暂无
中图分类号
学科分类号
摘要
We revisit the topic of two-state quantum systems using the Clifford Algebra in three dimensions Cl3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Cl_3$$\end{document}. In this description, both the quantum states and Hermitian operators are written as elements of Cl3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Cl_3$$\end{document}. By writing the quantum states as elements of the minimal left ideals of this algebra, we compute the energy eigenvalues and eigenvectors for the Hamiltonian of an arbitrary two-state system. The geometric interpretation of the Hermitian operators enables us to introduce an algebraic method to diagonalize these operators in Cl3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Cl_3$$\end{document}. We then use this approach to revisit the problem of a spin-1/2 particle interacting with an external arbitrary constant magnetic field, obtaining the same results as in the conventional theory. However, Clifford algebra reveals the underlying geometry of these systems, which reduces to the Larmor precession in an arbitrary plane of Cl3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Cl_3$$\end{document}.
引用
收藏
相关论文
共 19 条
[1]  
Baylis WE(2010)Quantum/classical interface: classical geometric origin of fermion spin Adv. Appl. Clifford Algebras 20 517-545
[2]  
Cabrera R(1998)Real spectra in non-Hermitian Hamiltonians having Phys. Rev. Lett. 80 5243-5246
[3]  
Keselica JD(2017) symmetry Adv. Appl. Clifford Algebras 27 241-253
[4]  
Bender C(1993)Calculation of quantum Eigens with geometrical algebra rotors Found. Phys. 23 1239-1264
[5]  
Boettcher S(2005)States and operators in the spacetime algebra Ann. Phys. 317 383-409
[6]  
Dargys A(2003)The construction of spinors in geometric algebra Am. J. Phys. 71 104-121
[7]  
Acus A(2012)Oersted medal lecture 2002: reforming the mathematical language of physics Found. Phys. 42 192-208
[8]  
Doran C(2011)Clifford algebras and the Dirac–Bohm quantum Hamilton–Jacobi equation Adv. Appl. Clifford Algebras 21 121-144
[9]  
Lasenby A(1987)Geometric roots of Acta Appl. Math. 9 165-173
[10]  
Gull S(undefined) in Clifford algebras undefined undefined undefined-undefined