Low cohomogeneity and polar actions on exceptional compact Lie groups

被引:0
作者
Andreas Kollross
机构
[1] Universität Augsburg,Institut für Mathematik
来源
Transformation Groups | 2009年 / 14卷
关键词
Symmetric Space; Closed Subgroup; Polar Action; Isotropy Subgroup; Isometric Action;
D O I
暂无
中图分类号
学科分类号
摘要
We study isometric Lie group actions on the compact exceptional groups E6, E7, E8, F4 and G2 endowed with a bi-invariant metric. We classify polar actions on these groups, in particular, we show that all polar actions are hyperpolar. We determine all isometric actions of cohomogeneity less than three on E6, E7, F4 and all isometric actions of cohomogeneity less than 20 on E8. Moreover, we determine the principal isotropy algebras for all isometric actions on G2.
引用
收藏
页码:387 / 415
页数:28
相关论文
共 31 条
  • [1] Bergmann I(2001)Reducible polar representations Manuscripta Math. 104 309-324
  • [2] Biliotti L(2006)Coisotropic and polar actions on compact irreducible Hermitian symmetric spaces Trans. Amer. Math. Soc. 358 3003-3022
  • [3] Biliotti L(2005)Coisotropic actions on complex Grassmannians Trans. Amer. Math. Soc. 357 1731-1751
  • [4] Gori A(1985)Polar coordinates induced by actions of compact Lie groups Trans. Amer. Math. Soc. 288 125-137
  • [5] Dadok J(1979)Certain isoparametric families of hypersurfaces in symmetric spaces J. Differential Geom. 14 21-40
  • [6] D’Atri JE(1999)On the classiffication of polar representations Math. Z. 232 391-398
  • [7] Eschenburg J-H(2004)Polar actions on compact symmetric spaces which admit a totally geodesic principal orbit Geom. Dedicata 103 193-204
  • [8] Heintze E(1997)A splitting theorem for isoparametric submanifolds in Hilbert space J. Differential Geom. 45 319-335
  • [9] Gorodski C(1960)Variational completeness for compact symmetric spaces Proc. Amer. Math. Soc. 11 544-546
  • [10] Heintze E(1970)Differentiable actions of compact connected classical groups II Ann. of Math. (2) 92 189-223