Finite Groups with Prescribed \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \Phi $\end{document}-Simple Maximal Subgroups

被引:0
作者
E. N. Bazhanova
V. A. Vedernikov
机构
[1] Moscow City Teachers’ Training University,
[2] Digital Education Institute,undefined
关键词
finite non-; -solvable group; maximal subgroup; -simple group; -nilpotent subgroup; -decomposable group; Schmidt group; Frattini subgroup; 512.542;
D O I
10.1134/S0037446621060021
中图分类号
学科分类号
摘要
Given \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ r\in\{2,3,5\} $\end{document}, we study the structure of finite non-\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ r $\end{document}-decomposable groups whose every non-\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ r $\end{document}-decomposable maximal subgroup is a \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \Phi $\end{document}-simple group.
引用
收藏
页码:981 / 993
页数:12
相关论文
共 16 条
  • [1] Thompson JG(1968)Nonsolvable finite groups all of whose local subgroups are solvable Bull. Amer. Math. Soc. 74 383-437
  • [2] Maslova NV(2013)Finite groups whose maximal subgroups have the Hall property Siberian Adv. Math. 23 196-209
  • [3] Revin DO(2014)Finite groups in which every nonsolvable maximal subgroup is a Hall subgroup Proc. Steklov Inst. Math. 285 S191-S202
  • [4] Vedernikov VA(2014)On finite groups with given maximal subgroups Sib. Math. J. 55 451-456
  • [5] Monakhov VS(1976)Endliche nichtauflösbare Gruppen mit einer nilpotenten maximalen Untergruppe J. Algebra 38 119-135
  • [6] Tyutyanov VN(1963)Solvability of groups of odd order Pacific J. Math. 13 775-1029
  • [7] Baumann B(1993)Minimal permutation representations of finite simple classical groups. Special linear, symplectic, and unitary groups Algebra Logic 32 142-153
  • [8] Feit W(1986)Subgroups of finite Chevalley groups Russian Math. Surveys 41 65-118
  • [9] Thompson J(2020)Nonsolvable finite groups whose all nonsolvable superlocals are Hall subgroups Sib. Math. J. 61 778-794
  • [10] Mazurov VD(1996)Minimal permutation representations of finite simple exceptional groups of types  Algebra Logic 35 371-383