The subfield codes of several classes of linear codes

被引:0
作者
Xiaoqiang Wang
Dabin Zheng
机构
[1] Hubei University,Hubei Key Laboratory of Applied Mathematics, Faculty of Mathematics and Statistics
来源
Cryptography and Communications | 2020年 / 12卷
关键词
Weight distribution; Subfield code; Linear code; Optimal code; 94B05; 94B15;
D O I
暂无
中图分类号
学科分类号
摘要
Let F2m\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbb {F}_{2^{m}}$\end{document} be the finite field with 2m elements, where m is a positive integer. Recently, Heng and Ding in (Finite Fields Appl. 56:308–331, 2019) studied the subfield codes of two families of hyperovel codes and determined the weight distribution of the linear code Ca,b=((Tr1m(af(x)+bx)+c)x∈F2m,Tr1m(a),Tr1m(b)):a,b∈F2m,c∈F2,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{C}_{a,b}=\left\{((\text{Tr}_{1}^{m}(a f(x)+bx)+c)_{x \in \mathbb{F}_{2^{m}}}, \text{Tr}_{1}^{m}(a), \text{Tr}_{1}^{m}(b)) : a,b \in \mathbb{F}_{2^{m}}, c \in \mathbb{F}_{2}\right\}, $$\end{document} for f(x) = x2 and f(x) = x6 with odd m. Let v2(⋅) denote the 2-adic order function. This paper investigates more subfield codes of linear codes and obtains the weight distribution of Ca,b\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal {C}_{a,b}$\end{document} for f(x)=x2i+2j\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$f(x)=x^{2^{i}+2^{j}}$\end{document}, where i, j are nonnegative integers such that v2(m) ≤ v2(i − j)(i ≥ j). In addition to this, we further investigate the punctured code of Ca,b\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal {C}_{a,b}$\end{document} as follows: Ca=((Tr1m(ax2i+2j+bx)+c)x∈F2m,Tr1m(a)):a,b∈F2m,c∈F2,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{C}_{a}=\left\{((\text{Tr}_{1}^{m}(a x^{2^{i}+2^{j}}+bx)+c)_{x \in \mathbb{F}_{2^{m}}}, \text{Tr}_{1}^{m}(a)) : a,b \in \mathbb{F}_{2^{m}}, c \in \mathbb{F}_{2}\right\}, $$\end{document} and determine its weight distribution for any nonnegative integers i, j. The parameters of these binary linear codes are new in most cases. Some of the codes and their duals obtained are optimal or almost optimal.
引用
收藏
页码:1111 / 1131
页数:20
相关论文
共 38 条
  • [1] Canteaut A(2000)Weight divisibility of cyclic codes, highly nonlinear functions on $\mathbb {F}_{2^{n}}$F2n, and crosscorrelation of maximum-length sequences SIAM Disc Math. 13 105-138
  • [2] Charpin P(1998)Codes, bent functions and permutations suitable For DES-like cryptosystems Des. Codes Cryptogr. 15 125-156
  • [3] Dobbertin H(1998)Further evaluations of Weil sums Acta Arith. 86 217-226
  • [4] Carlet C(2002)The number of rational points of a class of Artin-Schreier curves Finite Fields Appl. 8 397-413
  • [5] Charpin P(2007)Cyclotomic linear codes of order 3 IEEE Trans. Inf. Theory 53 2274-2277
  • [6] Zinoviev V(2019)The subfield codes of ovoid codes IEEE Trans. Inf. Theory 65 4715-4729
  • [7] Coulter RS(2015)Linear codes from some 2-designs IEEE Trans. Inf. Theory 61 3265-3275
  • [8] Coulter RS(2016)A construction of binary linear codes from Boolean functions Discrete Math. 339 2288-2303
  • [9] Ding C(2014)Binary linear codes with three weights IEEE Commun. Lett. 18 1879-1882
  • [10] Niederreiter H(2015)A class of two-weight and three-weight codes and their applications in secret sharing IEEE Trans. Inf. Theory 61 5835-5842