Stability and instability for Einstein-scalar field Lichnerowicz equations on compact Riemannian manifolds

被引:0
作者
Olivier Druet
Emmanuel Hebey
机构
[1] Ecole normale supérieure de Lyon,Département de Mathématiques
[2] Université de Cergy-Pontoise,UMPA
来源
Mathematische Zeitschrift | 2009年 / 263卷
关键词
Harnack Inequality; Compact Riemannian Manifold; Positive Scalar Curvature; Constant Mean Curvature; Smooth Positive Function;
D O I
暂无
中图分类号
学科分类号
摘要
We investigate stability issues for Einstein-scalar field Lichnerowicz equations in the inhomogeneous context of a compact Riemannian manifold. We prove that stability holds true when the dimension n is such that n ≤ 5 and fails to hold in general when n ≥ 6.
引用
收藏
页码:33 / 67
页数:34
相关论文
共 12 条
  • [1] Caffarelli L.A.(1989)Asymptotic symmetry and local behavior of semilinear elliptic equations with critical Sobolev growth Comm. Pure Appl. Math. 42 271-297
  • [2] Gidas B.(2006)The Einstein-scalar field constraints on asymptotically Euclidean manifolds Chin. Ann. Math. Ser. B 27 31-52
  • [3] Spruck J.(2007)The constraints equations for the Einstein-scalar field system on compact manifolds Class. Quantum Grav. 24 809-828
  • [4] Choquet-Bruhat Y.(2004)Compactness for Yamabe metrics in low dimensions Int. Math. Res. Notices 23 1143-1191
  • [5] Isenberg J.(2004)Accelerated cosmological expansion due o a scalar field whose potential has a positive lower bound Class. Quantum Grav. 21 2445-2454
  • [6] Pollack D.(2005)Intermediate inflation and the slow-roll approximation Class. Quantum Grav. 22 1655-1666
  • [7] Choquet-Bruhat Y.(undefined)undefined undefined undefined undefined-undefined
  • [8] Isenberg J.(undefined)undefined undefined undefined undefined-undefined
  • [9] Pollack D.(undefined)undefined undefined undefined undefined-undefined
  • [10] Druet O.(undefined)undefined undefined undefined undefined-undefined