Modules over Endomorphism Rings

被引:0
作者
A. A. Tuganbaev
机构
[1] Moscow Power Engineering Institute,
来源
Mathematical Notes | 2004年 / 75卷
关键词
endomorphism ring; distributive ring; Bezout module; quasiinjective module;
D O I
暂无
中图分类号
学科分类号
摘要
It is proved that A is a right distributive ring if and only if all quasiinjective right A-modules are Bezout left modules over their endomorphism rings if and only if for any quasiinjective right A-module M which is a Bezout left End (M)-module, every direct summand N of M is a Bezout left End(N)-module. If A is a right or left perfect ring, then all right A-modules are Bezout left modules over their endomorphism rings if and only if all right A-modules are distributive left modules over their endomorphism rings if and only if A is a distributive ring.
引用
收藏
页码:836 / 847
页数:11
相关论文
共 50 条
[31]   Modules over formal matrix rings [J].
Krylov P.A. ;
Tuganbaev A.A. .
Journal of Mathematical Sciences, 2010, 171 (2) :248-295
[32]   ON COHERENCE OF ENDOMORPHISM RINGS [J].
Zhu, Hai-Yan ;
Ding, Nan-Qing .
BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2010, 81 (02) :186-194
[33]   REGULARITY IN ENDOMORPHISM RINGS [J].
Mader, Adolf .
COMMUNICATIONS IN ALGEBRA, 2009, 37 (08) :2823-2844
[34]   Properties of endomorphism rings [J].
K. Varadarajan .
Acta Mathematica Hungarica, 1997, 74 :83-92
[35]   On QB endomorphism rings [J].
Chen, Huanyin .
COMMUNICATIONS IN ALGEBRA, 2007, 35 (12) :4005-4017
[36]   Isomorphisms and anti-isomorphisms of endomorphism rings of graded modules close to free ones [J].
I. N. Balaba ;
A. V. Mikhalev .
Doklady Mathematics, 2009, 79 :255-257
[37]   Anti-isomorphisms of graded endomorphism rings of graded modules close to free ones [J].
Balaba I.N. ;
Mikhalev A.V. .
Journal of Mathematical Sciences, 2010, 164 (2) :168-177
[38]   Antiisomorphisms of endomorphism rings of modules close to free ones which are induced by morita antiequivalences [J].
Beidar K.I. ;
Mikhalev A.V. .
Journal of Mathematical Sciences, 1997, 85 (6) :2450-2453
[39]   Flat modules and rings finitely generated as modules over their center [J].
Tuganbaev, AA .
MATHEMATICAL NOTES, 1996, 60 (1-2) :186-203
[40]   On the endomorphism rings of abelian groups and their Jacobson radical [J].
Victor Bovdi ;
Alexander Grishkov ;
Mihail Ursul .
Periodica Mathematica Hungarica, 2015, 71 :155-165