Global Well-Posedness and Scattering for the Defocusing, Mass-Critical Generalized KdV Equation

被引:2
作者
Dodson B. [1 ]
机构
[1] Johns Hopkins University, Baltimore, MD
基金
美国国家科学基金会;
关键词
Concentration compactness; KdV; Scattering;
D O I
10.1007/s40818-017-0025-9
中图分类号
学科分类号
摘要
In this paper we prove that the defocusing, mass-critical generalized KdV initial value problem is globally well-posed and scattering for u∈ L2(R). To prove this, we combine the profile decomposition of Killip et al. (Discrete Contin Dyn Syst Ser A 32(1):191–221, 2012) with an interaction Morawetz estimate constructed from the monotonicity formula of Tao (Discrete Contin Dyn Syst Ser A 18(1):1–14, 2007). © 2017, Springer International Publishing AG.
引用
收藏
相关论文
共 48 条
[41]  
Strichartz R.S., Restrictions of Fourier transforms to quadratic surfaces and decay of solutions of wave equations, Duke Math. J., 44, 3, pp. 705-714, (1977)
[42]  
Tao T., Global well-posedness and scattering for the higher-dimensional energy-critical nonlinear Schrödinger equation for radial data, N. Y. J. Math., 11, pp. 57-80, (2005)
[43]  
Tao T., Nonlinear Dispersive Equations, (2006)
[44]  
Tao T., Two remarks on the generalised Korteweg de-Vries equation, Discrete Contin. Dyn. Syst. Ser. A, 18, 1, pp. 1-14, (2007)
[45]  
Tao T., Visan M., Zhang X., The nonlinear Schrödinger equation with combined power-type nonlinearities, Commun. Partial Differ. Equ., 32, 8, pp. 1281-1343, (2007)
[46]  
Tao T., Visan M., Zhang X., Minimal-mass blowup solutions of the mass-critical NLS, Forum Math., 20, pp. 881-919, (2008)
[47]  
Tao T., Visan M., Zhang X., Global well-posedness and scattering for the defocusing mass-critical nonlinear Schrödinger equation for radial data in high dimensions, Duke Math. J., 140, 1, pp. 165-202, (2007)
[48]  
Visan M., The defocusing energy-critical nonlinear Schrödinger equation in higher dimensions, Duke Math. J., 138, 2, pp. 281-374, (2007)