Global Well-Posedness and Scattering for the Defocusing, Mass-Critical Generalized KdV Equation

被引:2
作者
Dodson B. [1 ]
机构
[1] Johns Hopkins University, Baltimore, MD
基金
美国国家科学基金会;
关键词
Concentration compactness; KdV; Scattering;
D O I
10.1007/s40818-017-0025-9
中图分类号
学科分类号
摘要
In this paper we prove that the defocusing, mass-critical generalized KdV initial value problem is globally well-posed and scattering for u∈ L2(R). To prove this, we combine the profile decomposition of Killip et al. (Discrete Contin Dyn Syst Ser A 32(1):191–221, 2012) with an interaction Morawetz estimate constructed from the monotonicity formula of Tao (Discrete Contin Dyn Syst Ser A 18(1):1–14, 2007). © 2017, Springer International Publishing AG.
引用
收藏
相关论文
共 48 条
  • [1] Begout P., Vargas A., Mass concentration phenomena for the L<sup>2</sup> -critical nonlinear Schrödinger equation, Trans. Am. Math. Soc., 359, 11, pp. 5257-5282, (2007)
  • [2] Bourgain J., Global wellposedness of defocusing critical nonlinear Schrödinger equation in the radial case, J. Am. Math. Soc., 12, 1, pp. 145-171, (1999)
  • [3] Carles R., Keraani S., On the role of quadratic oscillations in nonlinear Schrödinger equations II. The L<sup>2</sup> -critical case, Trans. Am. Math. Soc., 359, 1, pp. 33-62, (2007)
  • [4] Cazenave T., Weissler F.B., The Cauchy problem for the critical nonlinear Schrödinger equation in H<sup>s</sup>, Nonlinear Anal. Theory Methods Appl., 14, 10, pp. 807-836, (1990)
  • [5] Cazenave T., Weissler F.B., Some remarks on the nonlinear Schrödinger equation in the critical case, Nonlinear Semigroups Partial Differ. Equ. Attract. Lect. Notes Math., 1394, pp. 18-29, (1989)
  • [6] Christ M., Colliander J., Tao T., Asymptotics, frequency modulation, and low regularity ill—posedness for canonical defocusing equations, Am. J. Math., 125, 6, pp. 1235-1293, (2003)
  • [7] Colliander J., Grillakis M., Tzirakis N., Tensor products and correlation estimates with applications to nonlinear Schrödinger equations, Commun. Pure Appl. Math., 62, 7, pp. 920-968, (2009)
  • [8] Colliander J., Keel M., Staffilani G., Takaoka H., Tao T., Global existence and scattering for rough solutions of a nonlinear Schrödinger equation on R<sup>3</sup>, Commun. Pure Appl. Math., 21, pp. 987-1014, (2004)
  • [9] Colliander J., Keel M., Staffilani G., Takaoka H., Tao T., Global well-posedness and scattering for the energy-critical nonlinear Schrödinger equation in R<sup>3</sup>, Ann. Math., 167, pp. 767-865, (2008)
  • [10] de Bouard A., Martel Y., Non existence of L<sup>2</sup> -compact solutions of the Kadomtsev–Petviashvili II equation, Math. Ann., 328, pp. 525-544, (2004)