We prove the convergence of an adaptive mixed finite element method (AMFEM) for (nonsymmetric) convection-diffusion-reaction equations. The convergence result holds for the cases where convection or reaction is not present in convection- or reaction-dominated problems. A novel technique of analysis is developed by using the superconvergence of the scalar displacement variable instead of the quasi-orthogonality for the stress and displacement variables, and without marking the oscillation dependent on discrete solutions and data. We show that AMFEM is a contraction of the error of the stress and displacement variables plus some quantity. Numerical experiments confirm the theoretical results.
机构:
Indian Inst Technol Madras, Dept Mech Engn, Chennai 600036, Tamil Nadu, IndiaIndian Inst Technol Madras, Dept Mech Engn, Chennai 600036, Tamil Nadu, India
Arrutselvi, M.
Natarajan, E.
论文数: 0引用数: 0
h-index: 0
机构:
Indian Inst Space Sci & Technol, Dept Math, Thiruvananthapuram 695547, Kerala, IndiaIndian Inst Technol Madras, Dept Mech Engn, Chennai 600036, Tamil Nadu, India
Natarajan, E.
Natarajan, S.
论文数: 0引用数: 0
h-index: 0
机构:
Indian Inst Technol Madras, Dept Mech Engn, Chennai 600036, Tamil Nadu, IndiaIndian Inst Technol Madras, Dept Mech Engn, Chennai 600036, Tamil Nadu, India
机构:
South China Normal Univ, Sch Math Sci, Guangzhou 510631, Peoples R ChinaSouth China Normal Univ, Sch Math Sci, Guangzhou 510631, Peoples R China
Zhong, Liuqiang
Xuan, Yue
论文数: 0引用数: 0
h-index: 0
机构:
South China Normal Univ, Sch Math Sci, Guangzhou 510631, Peoples R ChinaSouth China Normal Univ, Sch Math Sci, Guangzhou 510631, Peoples R China
Xuan, Yue
Cui, Jintao
论文数: 0引用数: 0
h-index: 0
机构:
Jinan Univ, Dept Math, Guangzhou 510632, Peoples R China
Hong Kong Polytech Univ, Dept Appl Math, Hung Hom, Hong Kong, Peoples R ChinaSouth China Normal Univ, Sch Math Sci, Guangzhou 510631, Peoples R China