Convergence of an adaptive mixed finite element method for convection-diffusion-reaction equations

被引:0
|
作者
ShaoHong Du
XiaoPing Xie
机构
[1] Chongqing Jiaotong University,School of Science
[2] Beijing Computational Science Research Center,School of Mathematics
[3] Sichuan University,undefined
来源
Science China Mathematics | 2015年 / 58卷
关键词
convection-diffusion-reaction equation; adaptive mixed finite element method; superconvergence; oscillation; convergence; 65N30; 65N15; 65N12; 65N50;
D O I
暂无
中图分类号
学科分类号
摘要
We prove the convergence of an adaptive mixed finite element method (AMFEM) for (nonsymmetric) convection-diffusion-reaction equations. The convergence result holds for the cases where convection or reaction is not present in convection- or reaction-dominated problems. A novel technique of analysis is developed by using the superconvergence of the scalar displacement variable instead of the quasi-orthogonality for the stress and displacement variables, and without marking the oscillation dependent on discrete solutions and data. We show that AMFEM is a contraction of the error of the stress and displacement variables plus some quantity. Numerical experiments confirm the theoretical results.
引用
收藏
页码:1327 / 1348
页数:21
相关论文
共 50 条
  • [1] Convergence of an adaptive mixed finite element method for convection-diffusion-reaction equations
    DU ShaoHong
    XIE XiaoPing
    ScienceChina(Mathematics), 2015, 58 (06) : 1327 - 1348
  • [2] Convergence of an adaptive mixed finite element method for convection-diffusion-reaction equations
    Du ShaoHong
    Xie XiaoPing
    SCIENCE CHINA-MATHEMATICS, 2015, 58 (06) : 1327 - 1348
  • [3] Solving convection-diffusion-reaction equation by adaptive finite volume element method
    Theeraek, P.
    Phongthanapanich, S.
    Dechaumphai, P.
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2011, 82 (02) : 220 - 233
  • [4] A stabilised finite element method for the convection-diffusion-reaction equation in mixed form
    Barrenechea, Gabriel R.
    Poza, Abner H.
    Yorston, Heather
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2018, 339 : 389 - 415
  • [5] STABILITY OF FINITE ELEMENT - FINITE VOLUME DISCRETIZATIONS OF CONVECTION-DIFFUSION-REACTION EQUATIONS
    Deuring, Paul
    Eymard, Robert
    TOPICAL PROBLEMS OF FLUID MECHANICS 2015, 2015, : 47 - 52
  • [6] On the stability of finite-element discretizations of convection-diffusion-reaction equations
    Knobloch, Petr
    Tobiska, Lutz
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2011, 31 (01) : 147 - 164
  • [7] A LOCAL PROJECTION STABILIZATION FINITE ELEMENT METHOD WITH NONLINEAR CROSSWIND DIFFUSION FOR CONVECTION-DIFFUSION-REACTION EQUATIONS
    Barrenechea, Gabriel R.
    John, Volker
    Knobloch, Petr
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2013, 47 (05): : 1335 - 1366
  • [8] Combined finite volume and finite element method for convection-diffusion-reaction equation
    Sutthisak Phongthanapanich
    Pramote Dechaumphai
    Journal of Mechanical Science and Technology, 2009, 23 : 790 - 801
  • [9] Combined finite volume and finite element method for convection-diffusion-reaction equation
    Phongthanapanich, Sutthisak
    Dechaumphai, Pramote
    JOURNAL OF MECHANICAL SCIENCE AND TECHNOLOGY, 2009, 23 (03) : 790 - 801
  • [10] Error estimates for finite volume element methods for convection-diffusion-reaction equations
    Sinha, Rajen K.
    Geiser, Juergen
    APPLIED NUMERICAL MATHEMATICS, 2007, 57 (01) : 59 - 72