Small-bandgap endohedral metallofullerenes in high yield and purity

被引:0
作者
S. Stevenson
G. Rice
T. Glass
K. Harich
F. Cromer
M. R. Jordan
J. Craft
E. Hadju
R. Bible
M. M. Olmstead
K. Maitra
A. J. Fisher
A. L. Balch
H. C. Dorn
机构
[1] Virginia Polytechnic Institute of State University,Department of Chemistry
[2] G. D. Searle & Co.,Department of Chemistry
[3] University of California,undefined
来源
Nature | 1999年 / 401卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
The idea1 that fullerenes might be able to encapsulate atoms and molecules has been verified by the successful synthesis of a range of endohedral fullerenes, in which metallic or non-metallic species are trapped inside the carbon cage2,3,4,5,6,7,8,9,10,11,12,13. Metal-containing endohedral fullerenes have attracted particular interest as they might exhibit unusual material properties associated with charge transfer from the metal to the carbon shell. However, current synthesis methods have typical yields of less than 0.5%, and produce multiple endohedral fullerene isomers, which makes it difficult to perform detailed studies of their properties. Here we show that the introduction of small amounts of nitrogen into an electric-arc reactor allows for the efficient production of a new family of stable endohedral fullerenes encapsulating trimetallic nitride clusters, ErxSc3-xN@C80 (x = 0–3). This ‘trimetallic nitride template’ process generates milligram quantities of product containing 3–5% Sc3N@C80, which allows us to isolate the material and determine its crystal structure, and its optical and electronic properties. We find that the Sc3N moiety is encapsulated in a highly symmetric, icosahedral C80 cage, which is stabilized as a result of charge transfer between the nitride cluster and the fullerene cage. We expect that our method will provide access to a range of small-bandgap fullerene materials, whose electronic properties can be tuned by encapsulating nitride clusters containing different metals and metal mixtures.
引用
收藏
页码:55 / 57
页数:2
相关论文
共 50 条
[41]   C74F38:: An exohedral derivative of a small-bandgap fullerene with D3 symmetry [J].
Goryunkov, AA ;
Markov, VY ;
Ioffe, IN ;
Bolskar, RD ;
Diener, MD ;
Kuvychko, IV ;
Strauss, SH ;
Boltalina, OV .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2004, 43 (08) :997-1000
[42]   Solution-Processed Ternary Organic Photodetectors with Ambipolar Small-Bandgap Polymer for Near-Infrared Sensing [J].
Bhat, Gurudutt ;
Kielar, Marcin ;
Sah, Pankaj ;
Pandey, Ajay K. ;
Sonar, Prashant .
ADVANCED ELECTRONIC MATERIALS, 2024, 10 (02)
[43]   SMALL-BANDGAP CONDUCTING POLYMERS-BASED ON CONJUGATED POLY(HETEROARYLENE METHINES) .2. SYNTHESIS, STRUCTURE, AND PROPERTIES [J].
CHEN, WC ;
JENEKHE, SA .
MACROMOLECULES, 1995, 28 (02) :465-480
[44]   Overcoming small-bandgap charge recombination in visible and NIR-light-driven hydrogen evolution by engineering the polymer photocatalyst structure [J].
Mohamed Hammad Elsayed ;
Mohamed Abdellah ;
Ahmed Zaki Alhakemy ;
Islam M. A. Mekhemer ;
Ahmed Esmail A. Aboubakr ;
Bo-Han Chen ;
Amr Sabbah ;
Kun-Han Lin ;
Wen-Sheng Chiu ;
Sheng-Jie Lin ;
Che-Yi Chu ;
Chih-Hsuan Lu ;
Shang-Da Yang ;
Mohamed Gamal Mohamed ;
Shiao-Wei Kuo ;
Chen-Hsiung Hung ;
Li-Chyong Chen ;
Kuei-Hsien Chen ;
Ho-Hsiu Chou .
Nature Communications, 15
[45]   SMALL-BANDGAP CONDUCTING POLYMERS BASED ON CONJUGATED POLY(HETEROARYLENE METHINES) .1. PRECURSOR POLY(HETEROARYLENE METHYLENES) [J].
CHEN, WC ;
JENEKHE, SA .
MACROMOLECULES, 1995, 28 (02) :454-464
[46]   High-yield extraction of endohedral rare-earth fullerenes [J].
Sun, DY ;
Liu, ZY ;
Guo, XH ;
Xu, WG ;
Liu, SY .
JOURNAL OF PHYSICAL CHEMISTRY B, 1997, 101 (20) :3927-3930
[47]   New procedures for glycophorin A purification with high yield and high purity [J].
Cochet, S ;
Volet, G ;
Cartron, JP ;
Bertrand, O .
JOURNAL OF CHROMATOGRAPHY B-ANALYTICAL TECHNOLOGIES IN THE BIOMEDICAL AND LIFE SCIENCES, 2001, 750 (01) :109-119
[48]   Performance Enhancement of the P3HT/PCBM Solar Cells through NIR Sensitization Using a Small-Bandgap Polymer [J].
Ameri, Tayebeh ;
Min, Jie ;
Li, Ning ;
Machui, Florian ;
Baran, Derya ;
Forster, Michael ;
Schottler, Kristina J. ;
Dolfen, Daniel ;
Scherf, Ullrich ;
Brabec, Christoph J. .
ADVANCED ENERGY MATERIALS, 2012, 2 (10) :1198-1202
[49]   Overcoming small-bandgap charge recombination in visible and NIR-light-driven hydrogen evolution by engineering the polymer photocatalyst structure [J].
Elsayed, Mohamed Hammad ;
Abdellah, Mohamed ;
Alhakemy, Ahmed Zaki ;
Mekhemer, Islam M. A. ;
Aboubakr, Ahmed Esmail A. ;
Chen, Bo-Han ;
Sabbah, Amr ;
Lin, Kun-Han ;
Chiu, Wen-Sheng ;
Lin, Sheng-Jie ;
Chu, Che-Yi ;
Lu, Chih-Hsuan ;
Yang, Shang-Da ;
Mohamed, Mohamed Gamal ;
Kuo, Shiao-Wei ;
Hung, Chen-Hsiung ;
Chen, Li-Chyong ;
Chen, Kuei-Hsien ;
Chou, Ho-Hsiu .
NATURE COMMUNICATIONS, 2024, 15 (01)
[50]   Modifying Poly(Vinyl Alcohol) (PVA) from Insulator to Small-Bandgap Polymer: A Novel Approach for Organic Solar Cells and Optoelectronic Devices [J].
Shujahadeen B. Aziz .
Journal of Electronic Materials, 2016, 45 :736-745