Product Hardy spaces associated to operators with heat kernel bounds on spaces of homogeneous type

被引:0
作者
Peng Chen
Xuan Thinh Duong
Ji Li
Lesley A. Ward
Lixin Yan
机构
[1] Sun Yat-sen University,Department of Mathematics
[2] University of South Australia,School of Information Technology and Mathematical Sciences
[3] Macquarie University,Department of Mathematics
来源
Mathematische Zeitschrift | 2016年 / 282卷
关键词
Singular integrals; Hardy spaces; Product space; Atomic decomposition; Calderón–Zygmund decomposition; 42B20; 42B25; 46B70; 47G30;
D O I
暂无
中图分类号
学科分类号
摘要
The aim of this article is to develop the theory of product Hardy spaces associated with operators which possess the weak assumption of Davies–Gaffney heat kernel estimates, in the setting of spaces of homogeneous type. We also establish a Calderón–Zygmund decomposition on product spaces, which is of independent and use it to study the interpolation of these product Hardy spaces. We then show that under the assumption of generalized Gaussian estimates, the product Hardy spaces coincide with the Lebesgue spaces, for an appropriate range of p.
引用
收藏
页码:1033 / 1065
页数:32
相关论文
共 62 条
[1]  
Auscher P(2008)Hardy spaces of differential forms on Riemannian manifolds J. Geom. Anal. 18 192-248
[2]  
McIntosh A(2002)Weighted norm estimates and maximal regularity Adv. Differ. Equ. 7 1513-1532
[3]  
Russ E(2010)Weighted anisotropic product Hardy spaces and boundedness of sublinear operators Math. Nachr. 283 392-442
[4]  
Blunck S(2010)Boundedness of sublinear operators on product Hardy spaces and its application J. Math. Soc. Jpn. 62 321-353
[5]  
Kunstmann PC(1980)A continuous version of the duality of Ann. Math. 112 179-201
[6]  
Bownik M(1982) with BMO on the bi-disc Am. J. Math. 104 445-468
[7]  
Li BD(1985)The Calderón–Zygmund decomposition on product domains Bull. Am. Math. Soc. 12 1-43
[8]  
Yang DC(1990)Some recent developments in Fourier analysis and Colloq. Math. 60 601-628
[9]  
Zhou Y(1985)-theory on product domains J. Funct. Anal. 62 304-335
[10]  
Chang DC(2008)A T(b) theorem with remarks on analytic capacity and the Cauchy integral Proc. Lond. Math. Soc. 96 507-544