Strength and fatigue properties enhancement in ultrafine-grained Ti produced by severe plastic deformation

被引:0
|
作者
I. P. Semenova
R. Z. Valiev
E. B. Yakushina
G. H. Salimgareeva
T. C. Lowe
机构
[1] Ufa State Aviation Technical University,Institute of Physics of Advanced Materials
[2] Los Alamos National Laboratory,undefined
来源
关键词
Severe Plastic Deformation; Equal Channel Angular Pressing; Fatigue Limit; High Pressure Torsion; Thermo Mechanical Treatment;
D O I
暂无
中图分类号
学科分类号
摘要
Severe plastic deformation (SPD) of titanium creates an ultrafine-grained (UFG) microstructure which results in significantly enhanced mechanical properties, including increasing the high cycle fatigue strength. This work addresses the challenge of maintaining the high level of properties as SPD processing techniques are evolved from methods suitable for producing laboratory scale samples to methods suitable for commercial scale production of titanium semi-products. Various ways to optimize the strength and fatigue endurance limit in long-length Grade 4 titanium rod processed by equal channel angular pressing (ECAP) with subsequent thermal mechanical treatments are considered in this paper. Low-temperature annealing of rods is found to increase the fatigue limit, simultaneously enhancing UFG titanium strength and ductility. The UFG structure in titanium provides an optimum combination of properties when its microstructure includes mostly equiaxed grains with high-angle boundaries, the volume fraction of which is no less than 50%.
引用
收藏
页码:7354 / 7359
页数:5
相关论文
共 50 条
  • [1] Strength and fatigue properties enhancement in ultrafine-grained Ti produced by severe plastic deformation
    Semenova, I. P.
    Valiev, R. Z.
    Yakushina, E. B.
    Salimgareeva, G. H.
    Lowe, T. C.
    JOURNAL OF MATERIALS SCIENCE, 2008, 43 (23-24) : 7354 - 7359
  • [2] Fatigue strength of ultrafine-grained pure Ti after severe plastic deformation
    Kim, WJ
    Hyun, CY
    Kim, HK
    SCRIPTA MATERIALIA, 2006, 54 (10) : 1745 - 1750
  • [3] Strength and high fatigue properties of ultrafine-grained titanium rods produced by severe plastic deformation
    Semenova I.P.
    Russian Metallurgy (Metally), 2010, 2010 (09) : 831 - 836
  • [4] Fatigue and microstructure of ultrafine-grained metals produced by severe plastic deformation
    Mughrabi, H
    Höppel, HW
    Kautz, M
    SCRIPTA MATERIALIA, 2004, 51 (08) : 807 - 812
  • [5] Overview of fatigue behaviour of ultrafine-grained copper produced by severe plastic deformation
    Lukas, Petr
    Kunz, Ludvik
    Svoboda, Milan
    MATERIALS STRUCTURE & MICROMECHANICS OF FRACTURE V, 2008, 567-568 : 9 - 16
  • [6] Enhanced fatigue properties of ultrafine-grained titanium rods produced using severe plastic deformation
    Semenova, I. P.
    Salimgareeva, G. Kh.
    Latysh, V. V.
    Valiev, R. Z.
    PERSPECTIVES OF NANOSCIENCE AND NANOTECHNOLOGY: ACTA MATERIALIA GOLD MEDAL WORKSHOP, 2008, 140 : 167 - 172
  • [7] ON THE STRUCTURE AND STRENGTH OF ULTRAFINE-GRAINED COPPER PRODUCED BY SEVERE PLASTIC-DEFORMATION
    GERTSMAN, VY
    BIRRINGER, R
    VALIEV, RZ
    GLEITER, H
    SCRIPTA METALLURGICA ET MATERIALIA, 1994, 30 (02): : 229 - 234
  • [8] Enhanced Strength and Ductility of Ultrafine-Grained Ti Processed by Severe Plastic Deformation
    Semenova, Irina
    Salimgareeva, Gulnaz
    Da Costa, Gerald
    Lefebvre, Williams
    Valiev, Ruslan
    ADVANCED ENGINEERING MATERIALS, 2010, 12 (08) : 803 - 807
  • [9] STRUCTURE AND PROPERTIES OF ULTRAFINE-GRAINED MATERIALS PRODUCED BY SEVERE PLASTIC-DEFORMATION
    VALIEV, RZ
    KORZNIKOV, AV
    MULYUKOV, RR
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 1993, 168 (02): : 141 - 148
  • [10] Characterization of ultrafine-grained structures produced by severe plastic deformation
    Horita, Z
    Furukawa, M
    Nemoto, M
    Valiev, RZ
    Langdon, TG
    INVESTIGATIONS AND APPLICATIONS OF SEVERE PLASTIC DEFORMATION, 2000, 80 : 155 - 162