On a Characterization of Idempotent Distributions on Discrete Fields and on the Field of p-Adic Numbers

被引:0
作者
Gennadiy Feldman
Margaryta Myronyuk
机构
[1] National Academy of Sciences of Ukraine,B.Verkin Institute for Low Temperature Physics and Engineering
来源
Journal of Theoretical Probability | 2017年 / 30卷
关键词
Characterization theorem; Idempotent distribution; Discrete field; The field of ; -adic numbers; 60B15; 62E10; 43A05;
D O I
暂无
中图分类号
学科分类号
摘要
We prove the following theorem. Let X be a discrete field, and ξ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\xi $$\end{document} and η\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\eta $$\end{document} be independent identically distributed random variables with values in X and distribution μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu $$\end{document}. The random variables S=ξ+η\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S=\xi +\eta $$\end{document} and D=(ξ-η)2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$D=(\xi -\eta )^2$$\end{document} are independent if and only if μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu $$\end{document} is an idempotent distribution. A similar result is also proved in the case when ξ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\xi $$\end{document} and η\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\eta $$\end{document} are independent identically distributed random variables with values in the field of p-adic numbers Qp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbf {Q}}_p$$\end{document}, where p>2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p>2$$\end{document}, assuming that the distribution μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu $$\end{document} has a continuous density.
引用
收藏
页码:608 / 623
页数:15
相关论文
共 18 条
  • [1] Feldman GM(1992)On the Skitovich–Darmois theorem on Abelian groups Theory Probab. Appl. 37 621-631
  • [2] Feldman GM(2003)A characterization of the Gaussian distribution on Abelian groups Probab. Theory Relat. Fields 126 91-102
  • [3] Feldman GM(2005)On a characterization theorem for locally compact abelian groups Probab. Theory Relat. Fields 133 345-357
  • [4] Feldman GM(2006)On the Heyde theorem for discrete Abelian groups Stud. Math. 177 67-79
  • [5] Feldman GM(2010)The Heyde theorem for locally compact Abelian groups J. Funct. Anal. 258 3977-3987
  • [6] Geary RC(1936)The distribution of “Student’s” ratio for non-normal samples Suppl. J. R. Stat. Soc. Lond. 3 178-184
  • [7] Graczyk P(2000)A Bernstein property of measures on groups and symmetric spaces Probab. Math. Stat. 20 141-149
  • [8] Loeb J-J(1997)Independence of the sum and absolute difference of independent random variables does not imply their normality Math. Methods Stat. 6 263-265
  • [9] Kagan A(1949)On the characterisation of the normal population by the independence of the sample mean and the sample variance J. Math. Soc. Jpn. 1 111-115
  • [10] Laha RC(1942)A characterization of the normal distribution Ann. Math. Stat. 13 91-93