Detecting differential expression from RNA-seq data with expression measurement uncertainty

被引:0
|
作者
Li Zhang
Songcan Chen
Xuejun Liu
机构
[1] Nanjing University of Aeronautics and Astronautics,College of Computer Science and Technology
来源
Frontiers of Computer Science | 2015年 / 9卷
关键词
RNA-seq; Bayesian method; differentially expressed genes/isoforms; expression measurement uncertainty; analysis pipeline;
D O I
暂无
中图分类号
学科分类号
摘要
High-throughput RNA sequencing (RNA-seq) has emerged as a revolutionary and powerful technology for expression profiling. Most proposed methods for detecting differentially expressed (DE) genes from RNA-seq are based on statistics that compare normalized read counts between conditions. However, there are few methods considering the expression measurement uncertainty into DE detection. Moreover, most methods are only capable of detecting DE genes, and few methods are available for detecting DE isoforms. In this paper, a Bayesian framework (BDSeq) is proposed to detect DE genes and isoforms with consideration of expression measurement uncertainty. This expression measurement uncertainty provides useful information which can help to improve the performance of DE detection. Three real RAN-seq data sets are used to evaluate the performance of BDSeq and results show that the inclusion of expression measurement uncertainty improves accuracy in detection of DE genes and isoforms. Finally, we develop a GamSeq-BDSeq RNA-seq analysis pipeline to facilitate users.
引用
收藏
页码:652 / 663
页数:11
相关论文
共 50 条
  • [41] A statistical normalization method and differential expression analysis for RNA-seq data between different species
    Yan Zhou
    Jiadi Zhu
    Tiejun Tong
    Junhui Wang
    Bingqing Lin
    Jun Zhang
    BMC Bioinformatics, 20
  • [42] Impact of human gene annotations on RNA-seq differential expression analysis
    Yu Hamaguchi
    Chao Zeng
    Michiaki Hamada
    BMC Genomics, 22
  • [43] Fused inverse-normal method for integrated differential expression analysis of RNA-seq data
    Prasad, Birbal
    Li, Xinzhong
    BMC BIOINFORMATICS, 2022, 23 (01)
  • [44] Impact of human gene annotations on RNA-seq differential expression analysis
    Hamaguchi, Yu
    Zeng, Chao
    Hamada, Michiaki
    BMC GENOMICS, 2021, 22 (01)
  • [45] Differential Expression Analysis of RNA-seq Reads: Overview, Taxonomy, and Tools
    Chowdhury, Hussain Ahmed
    Bhattacharyya, Dhruba Kumar
    Kalita, Jugal Kumar
    IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, 2020, 17 (02) : 566 - 586
  • [46] Bootstrap-based differential gene expression analysis for RNA-Seq data with and without replicates
    Sahar Al Seesi
    Yvette Temate Tiagueu
    Alexander Zelikovsky
    Ion I Măndoiu
    BMC Genomics, 15
  • [47] Fused inverse-normal method for integrated differential expression analysis of RNA-seq data
    Birbal Prasad
    Xinzhong Li
    BMC Bioinformatics, 23
  • [48] Power analysis and sample size estimation for RNA-Seq differential expression
    Ching, Travers
    Huang, Sijia
    Garmire, Lana X.
    RNA, 2014, 20 (11) : 1684 - 1696
  • [49] A fuzzy method for RNA-Seq differential expression analysis in presence of multireads
    Arianna Consiglio
    Corrado Mencar
    Giorgio Grillo
    Flaviana Marzano
    Mariano Francesco Caratozzolo
    Sabino Liuni
    BMC Bioinformatics, 17
  • [50] A fuzzy method for RNA-Seq differential expression analysis in presence of multireads
    Consiglio, Arianna
    Mencar, Corrado
    Grillo, Giorgio
    Marzano, Flaviana
    Caratozzolo, Mariano Francesco
    Liuni, Sabino
    BMC BIOINFORMATICS, 2016, 17