Complete sets, radii, and inner radii

被引:6
作者
Caspani L. [1 ]
Papini P.L. [2 ]
机构
[1] Dipartimento di Matematica F. Enriques, Università degli Studi di Milano, 20133 Milano, Via Saldini
[2] Dipartimento di Matematica, Università di Bologna, 40126 Bologna, Piazza Porta S. Donato
来源
Beiträge zur Algebra und Geometrie / Contributions to Algebra and Geometry | 2011年 / 52卷 / 1期
关键词
Center; Complete set; Diametrically maximal; Incenter; Self-center; Set of constant width;
D O I
10.1007/s13366-011-0014-1
中图分类号
学科分类号
摘要
In this paper we discuss some properties concerning sets of constant width and some related classes of sets. In particular, we discuss for such sets radii, self radii, and the existence of centers and incenters. By means of several examples, some of them rather pathological, we try to sketch a fairly complete picture concerning the different situations that are possible and their implications. © 2011 The Managing Editors.
引用
收藏
页码:163 / 170
页数:7
相关论文
共 13 条
  • [1] Astaneh A.A., Inscribed centers, reflexivity, and some applications, J. Aust. Math. Soc., Series A, 41, pp. 317-324, (1986)
  • [2] Aumann G., Inequalities for curves of constant breadth, J. Geom., 31, pp. 6-21, (1988)
  • [3] Baronti M., Casini E., Papini P.L., Equilateral sets and their central points, Rend. Mat. Appl., 13, 7, pp. 133-148, (1993)
  • [4] Baronti M., Papini P.L., Diameters, centers and diametrically maximal sets, Rend. Circ. Mat. Palermo Suppl., 38, 2, pp. 11-24, (1995)
  • [5] Brandenberg R., Dattasharma A., Gritzmann P., Larman D., Isoradial bodies, Discret. Comput. Geom., 32, pp. 447-457, (2004)
  • [6] Cabello Pinar J.C., Convexos De Anchura Constante En Dimension Infinita, (1988)
  • [7] Chakerian G.D., Groemer H., Convex bodies of constant width, Convexity and Its Applications, pp. 49-96, (1983)
  • [8] Heil E., Martini H., Special convex bodies, Handbook of Convex Geometry, A, pp. 347-385, (1993)
  • [9] Hernandez Cifre M.H., Salinas G., Segura Gomis S., Two optimization problems for convex bodies in the n-dimensional space, Beitr. Algebra Geom., 45, pp. 549-555, (2004)
  • [10] Martini H., Swanepoel K.J., The geometry of Minkowski spaces-a survey, Part II, Expo. Math., 22, pp. 93-144, (2004)