Reflexivity of finite-dimensional sets of operators

被引:0
|
作者
Janko Bračič
机构
[1] University of Ljubljana,
[2] NTF,undefined
关键词
Reflexive set of operators; Locally linearly dependent operators; Flat sets of operators; 47A99; 47L05; 47L07;
D O I
暂无
中图分类号
学科分类号
摘要
A non-empty set of operators M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {M}$$\end{document} is reflexive if an operator T is in M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {M}$$\end{document} if and only if Tx∈Mx¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Tx\in \overline{\mathcal {M} x}$$\end{document}, for all vectors x. In this paper, we study the reflexivity of finite-dimensional sets of operators. We introduce the class of flat sets of operators and prove several results related to the reflexivity of these sets; in particular, we show that the convex hull of three (or fewer) operators is reflexive.
引用
收藏
相关论文
共 50 条