Role of cytochromes P450 in the metabolism of methyl tert -butyl ether in human livers

被引:0
作者
Jun-Yan Hong
Chung S. Yang
Maojung Lee
Yong-Yu Wang
Wei-qun Huang
Yizheng Tan
Christopher J. Patten
Flordeliza Y. Bondoc
机构
[1] Laboratory for Cancer Research,
[2] Department of Chemical Biology,undefined
[3] College of Pharmacy,undefined
[4] Rutgers University,undefined
[5] Piscataway,undefined
[6] NJ 08854,undefined
[7] USA,undefined
[8] The American Health Foundation,undefined
[9] Valhalla,undefined
[10] NY 10595,undefined
[11] USA,undefined
来源
Archives of Toxicology | 1997年 / 71卷
关键词
Key words Methyl tert-butyl ether ;  Metabolism ;   Human liver microsomes ;  Cytochromes P450;
D O I
暂无
中图分类号
学科分类号
摘要
Methyl tert-butyl ether (MTBE) is widely used as a gasoline oxygenate for more complete combustion in order to reduce the air pollution caused by motor vehicle exhaust. The possible adverse effects of MTBE on human health is a major public concern. However, information on the metabolism of MTBE in human tissues is lacking. The present study demonstrates that human liver is active in metabolizing MTBE to tert-butyl alcohol (TBA), a major circulating metabolite and a marker for exposure to MTBE. The activity is localized in the microsomal fraction (125 ± 11 pmol TBA/min per mg protein, n = 8) but not in the cytosol. This activity level in human liver microsomes is approximately one-half of the value in rat and mouse liver microsomes. Formation of TBA in human liver microsomes is NADPH-dependent, and is significantly inhibited by carbon monoxide (CO), an inhibitor of cytochrome P450 (CYP) enzymes, suggesting that CYP enzymes play a critical role in the metabolism of MTBE in human livers. Both CYP2A6 and 2E1 are known to be constitutively expressed in human livers. To examine their involvement in MTBE metabolism, human CYP2A6 and 2E1 cDNAs were individually co-expressed with human cytochrome P450 reductase by a baculovirus expression system and the expressed enzymes were used for MTBE metabolism. The turnover number for CYP2A6 and 2E1 was 6.1 and 0.7 nmol TBA/min per nmol P450, respectively. The heterologously expressed human CYP2A6 was also more active than 2E1 in the metabolism of two other gasoline ethers, ethyl tert-butyl ether (ETBE) and tert-amyl methyl ether (TAME). Although the contributions of other human CYP forms to MTBE metabolism remain to be determined, these results strongly suggest that CYP enzymes play an important role in the metabolism of MTBE in human livers.
引用
收藏
页码:266 / 269
页数:3
相关论文
empty
未找到相关数据