Generalized Rickart \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \ast $\end{document}-Rings

被引:0
作者
M. Ahmadi
A. Moussavi
机构
[1] Tarbiat Modares University,Department of Pure Mathematics, Faculty of Mathematical Sciences
关键词
Rickart ; -ring; generalized Rickart ; -ring; generalized p.p. ring; generalized Baer ; -ring; Banach ; -algebra; 512.552;
D O I
10.1134/S003744662106001X
中图分类号
学科分类号
摘要
As a common generalization of Rickart \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \ast $\end{document}-rings and generalized Baer \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \ast $\end{document}-rings, we say that a ring \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ R $\end{document} with an involution \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \ast $\end{document} is a generalized Rickart \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \ast $\end{document}-ring if for all \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ x\in R $\end{document} the right annihilator of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ x^{n} $\end{document} is generated by a projection for some positive integer \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ n $\end{document} depending on \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ x $\end{document}. The abelian generalized Rickart \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \ast $\end{document}-rings are closed under finite direct product. We address the behavior of the generalized Rickart \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \ast $\end{document} condition with respect to various constructions and extensions, present some families of generalized Rickart \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \ast $\end{document}-rings, study connections to the related classes of rings, and indicate various examples of generalized Rickart \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \ast $\end{document}-rings. Also, we provide some large classes of finite and infinite-dimensional Banach \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \ast $\end{document}-algebras that are generalized Rickart \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \ast $\end{document}-rings but neither Rickart \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \ast $\end{document}-rings nor generalized Baer \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \ast $\end{document}-rings.
引用
收藏
页码:963 / 980
页数:17
相关论文
共 44 条
[1]  
Rickart CE(1946)Banach algebras with an adjoint operation Ann. Math. 47 528-550
[2]  
Takeda Z(1954)Conjugate spaces of operator algebras Proc. Japan Acad. 30 90-95
[3]  
Birkenmeier GF(2000)Self-adjoint ideals in Baer Comm. Algebra 28 4259-4268
[4]  
Park JK(2006)-rings J. Algebra 304 633-665
[5]  
Birkenmeier GF(2020)Ring hulls and their applications Comm. Algebra 48 2207-2247
[6]  
Park JK(1984)Generalized quasi-Baer Math. J. Okayama Univ. 26 157-167
[7]  
Rizvi ST(2002)-rings and Banach J. Pure Appl. Algebra 167 37-52
[8]  
Ahmadi M(1985)-algebras Math. J. Okayama Univ. 27 157-167
[9]  
Golestani N(2018)On non-commutative generalized p.p. rings Algebra Colloq. 25 509-518
[10]  
Moussavi M(1950)p.p. rings and generalized p.p. rings Trans. Amer. Math. Soc. 68 62-75