Holographic entanglement of purification near a critical point

被引:0
作者
B. Amrahi
M. Ali-Akbari
M. Asadi
机构
[1] Shahid Beheshti University,Department of Physics
[2] Institute for Research in Fundamental Sciences (IPM),School of Physics
来源
The European Physical Journal C | 2020年 / 80卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
In the presence of finite chemical potential μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu $$\end{document}, we holographically compute the entanglement of purification in a 2+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2+1$$\end{document}- and 3+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$3+1$$\end{document}-dimensional field theory and also in a 3+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$3+1$$\end{document}-dimensional field theory with a critical point, at which a phase transition takes place. We observe that compared to 2+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2+1$$\end{document}- and 3+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$3+1$$\end{document}-dimensional field theories, the behavior of entanglement of purification near critical point is different and it is not a monotonic function of μT\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\frac{\mu }{T}$$\end{document} where T is the temperature of the field theory. Therefore, the entanglement of purification distinguishes the critical point in the field theory. We also discuss the dependence of the holographic entanglement of purification on the various parameters of the theories. Moreover, the critical exponent is calculated.
引用
收藏
相关论文
共 59 条
  • [1] Ryu S(2006)Holographic derivation of entanglement entropy from AdS/CFT Phys. Rev. Lett. 96 181602-undefined
  • [2] Takayanagi T(2006)Aspects of holographic entanglement entropy JHEP 0608 045-undefined
  • [3] Ryu S(2007)A covariant holographic entanglement entropy proposal JHEP 0707 062-undefined
  • [4] Takayanagi T(2018)Entanglement of purification through holographic duality Nat. Phys. 14 573-undefined
  • [5] Hubeny VE(2018)Entanglement of purification: from spin chains to holography JHEP 1801 098-undefined
  • [6] Rangamani M(2019)Entanglement negativity and minimal entanglement wedge cross sections in holographic theories Phys. Rev. D 99 106014-undefined
  • [7] Takayanagi T(2019)Entanglement wedge cross section from the dual density matrix Phys. Rev. Lett. 122 141601-undefined
  • [8] Takayanagi T(2019)Geometric aspects of holographic bit threads JHEP 05 075-undefined
  • [9] Umemoto K(2019)Holographic entanglement of purification for thermofield double states and thermal quench JHEP 1901 114-undefined
  • [10] Nguyen P(2018)Entanglement of purification in free scalar field theories JHEP 1804 132-undefined