Harnessing big ‘omics’ data and AI for drug discovery in hepatocellular carcinoma

被引:0
|
作者
Bin Chen
Lana Garmire
Diego F. Calvisi
Mei-Sze Chua
Robin K. Kelley
Xin Chen
机构
[1] Michigan State University,Department of Pediatrics and Human Development, Department of Pharmacology and Toxicology
[2] University of Michigan,Department of Computational Medicine and Bioinformatics
[3] University of Sassari,Department of Clinical and Experimental Medicine
[4] University of Regensburg,Institute of Pathology
[5] Stanford University,Department of Surgery, Asian Liver Center, School of Medicine
[6] Stanford,Department of Medicine
[7] University of California,Department of Bioengineering and Therapeutic Sciences
[8] University of California,undefined
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Hepatocellular carcinoma (HCC) is the most common form of primary adult liver cancer. After nearly a decade with sorafenib as the only approved treatment, multiple new agents have demonstrated efficacy in clinical trials, including the targeted therapies regorafenib, lenvatinib and cabozantinib, the anti-angiogenic antibody ramucirumab, and the immune checkpoint inhibitors nivolumab and pembrolizumab. Although these agents offer new promise to patients with HCC, the optimal choice and sequence of therapies remains unknown and without established biomarkers, and many patients do not respond to treatment. The advances and the decreasing costs of molecular measurement technologies enable profiling of HCC molecular features (such as genome, transcriptome, proteome and metabolome) at different levels, including bulk tissues, animal models and single cells. The release of such data sets to the public enhances the ability to search for information from these legacy studies and provides the opportunity to leverage them to understand HCC mechanisms, rationally develop new therapeutics and identify candidate biomarkers of treatment response. Here, we provide a comprehensive review of public data sets related to HCC and discuss how emerging artificial intelligence methods can be applied to identify new targets and drugs as well as to guide therapeutic choices for improved HCC treatment.
引用
收藏
页码:238 / 251
页数:13
相关论文
共 50 条
  • [31] Integrated Multiple "-omics" Data Reveal Subtypes of Hepatocellular Carcinoma
    Liu, Gang
    Dong, Chuanpeng
    Liu, Lei
    PLOS ONE, 2016, 11 (11):
  • [32] Multi-omics discovery of exome-derived neoantigens in hepatocellular carcinoma
    Loeffler, Markus W.
    Mohr, Christopher
    Bichmann, Leon
    Freudenmann, Lena Katharina
    Walzer, Mathias
    Schroeder, Christopher M.
    Trautwein, Nico
    Hilke, Franz J.
    Zinser, Raphael S.
    Muehlenbruch, Lena
    Kowalewski, Daniel J.
    Schuster, Heiko
    Sturm, Marc
    Matthes, Jakob
    Riess, Olaf
    Czemmel, Stefan
    Nahnsen, Sven
    Koenigsrainer, Ingmar
    Thiel, Karolin
    Nadalin, Silvio
    Beckert, Stefan
    Boesmueller, Hans
    Fend, Falko
    Velic, Ana
    Macek, Boris
    Haen, Sebastian P.
    Buonaguro, Luigi
    Kohlbacher, Oliver
    Stevanovic, Stefan
    Koenigsrainer, Alfred
    Mayer-Mokler, Andrea
    Weinschenk, Toni
    Flohr, Christian
    Reinhardt, Carsten
    Singh-Jasuja, Harpreet
    Accolla, Roberto S.
    Tosi, Giovanna
    Forlani, Greta
    Ma, Yuk T.
    Adams, David
    Valmori, Danila
    Chaumette, Tanguy
    Heidenreich, Regina
    Koenigsrainer, Alfred
    Loeffler, Markus W.
    Rammensee, Hans-Georg
    Gouttefangeas, Cecile
    Sangro, Bruno
    Inarrairaegui, Mercedes
    Francque, Sven
    GENOME MEDICINE, 2019, 11 (1)
  • [33] Multi-omics discovery of exome-derived neoantigens in hepatocellular carcinoma
    Markus W. Löffler
    Christopher Mohr
    Leon Bichmann
    Lena Katharina Freudenmann
    Mathias Walzer
    Christopher M. Schroeder
    Nico Trautwein
    Franz J. Hilke
    Raphael S. Zinser
    Lena Mühlenbruch
    Daniel J. Kowalewski
    Heiko Schuster
    Marc Sturm
    Jakob Matthes
    Olaf Riess
    Stefan Czemmel
    Sven Nahnsen
    Ingmar Königsrainer
    Karolin Thiel
    Silvio Nadalin
    Stefan Beckert
    Hans Bösmüller
    Falko Fend
    Ana Velic
    Boris Maček
    Sebastian P. Haen
    Luigi Buonaguro
    Oliver Kohlbacher
    Stefan Stevanović
    Alfred Königsrainer
    Hans-Georg Rammensee
    Genome Medicine, 11
  • [34] HARNESSING SMALL MOLECULE BIG DATA AND INTESTINAL ORGANOID-BASED FUNCTIONAL SCREENING FOR CYSTIC FIBROSIS DRUG DISCOVERY
    Wang, Y.
    Arora, K.
    Yang, F.
    Chen, J.
    Naren, A.
    Jegga, A.
    PEDIATRIC PULMONOLOGY, 2017, 52 : S299 - S300
  • [35] Data-driven drug discovery and healthcare by AI
    Yamanishi, Yoshihiro
    CANCER SCIENCE, 2023, 114 : 7 - 7
  • [36] The Difference Is the Data: Drug Discovery's AI Revolution
    Lin, Fay
    GEN BIOTECHNOLOGY, 2024, 3 (02): : 50 - 54
  • [37] Big Data and Artificial Intelligence Modeling for Drug Discovery
    Zhu, Hao
    ANNUAL REVIEW OF PHARMACOLOGY AND TOXICOLOGY, VOL 60, 2020, 60 : 573 - 589
  • [38] Use of "big data" in drug discovery and clinical trials
    Taglang, Guillaume
    Jackson, David B.
    GYNECOLOGIC ONCOLOGY, 2016, 141 (01) : 17 - 23
  • [39] AI for drug discovery
    Lloyd, Louise
    NATURE REVIEWS UROLOGY, 2024, 21 (09) : 517 - 517
  • [40] AI in drug discovery
    Tsao, Nadia
    CHEMISTRY & INDUSTRY, 2021, 85 (10) : 11 - 11