Phenological responses of Ulmus pumila (Siberian Elm) to climate change in the temperate zone of China

被引:0
作者
Xiaoqiu Chen
Lin Xu
机构
[1] Peking University,College of Urban and Environmental Sciences, Laboratory for Earth Surface Processes of the Ministry of Education
来源
International Journal of Biometeorology | 2012年 / 56卷
关键词
Phenological growing season; Linear trend; Response to temperature; Sensitivity; Climate change;
D O I
暂无
中图分类号
学科分类号
摘要
Using Ulmus pumila (Siberian Elm) leaf unfolding and leaf fall phenological data from 46 stations in the temperate zone of China for the period 1986–2005, we detected linear trends in both start and end dates and length of the growing season. Moreover, we defined the optimum length period during which daily mean temperature affects the growing season start and end dates most markedly at each station in order to more precisely and rationally identify responses of the growing season to temperature. On average, the growing season start date advanced significantly at a rate of −4.0 days per decade, whereas the growing season end date was delayed significantly at a rate of 2.2 days per decade and the growing season length was prolonged significantly at a rate of 6.5 days per decade across the temperate zone of China. Thus, the growing season extension was induced mainly by the advancement of the start date. At individual stations, linear trends of the start date correlate negatively with linear trends of spring temperature during the optimum length period, namely, the quicker the spring temperature increased at a station, the quicker the start date advanced. With respect to growing season response to interannual temperature variation, a 1°C increase in spring temperature during the optimum length period may induce an advancement of 2.8 days in the start date of the growing season, whereas a 1°C increase in autumn temperature during the optimum length period may cause a delay of 2.1 days in the end date of the growing season, and a 1°C increase in annual mean temperature may result in a lengthening of the growing season of 9 days across the temperate zone of China. Therefore, the response of the start date to temperature is more sensitive than the response of the end date. At individual stations, the sensitivity of growing season response to temperature depends obviously on local thermal conditions, namely, either the negative response of the start date or the positive response of the end date and growing season length to temperature was stronger at warmer locations than at colder locations. Thus, future regional climate warming may enhance the sensitivity of plant phenological response to temperature, especially in colder regions.
引用
收藏
页码:695 / 706
页数:11
相关论文
共 100 条
  • [1] Ahas R(1999)Long-term phyto-, ornitho- and ichthyophenological time-series analyses in Estonia Int J Biometeorol 42 119-123
  • [2] Beaubien EG(2000)Spring phenology trends in Alberta, Canada: links to ocean temperature Int J Biometeorol 44 53-59
  • [3] Freeland HJ(1999)Phenological changes reflect climate change in Wisconsin Proc Natl Acad Sci USA 96 9701-9704
  • [4] Bradley NL(1995)Phaenologische und klimatologische Raumgliederung Westdeutschlands Geogr Runds 47 312-317
  • [5] Leopold AC(2002)Relationships among phenological growing season, time-integrated normalized difference vegetation index and climate forcing in the temperate region of eastern China Int J Climatol 22 1781-1792
  • [6] Ross J(2005)Spatial and temporal variation of phenological growing season and climate change impacts in temperate eastern China Global Change Biol 11 1118-1130
  • [7] Huffaker W(2001)Response of tree phenology to climate change across Europe Agric For Meteorol 108 101-112
  • [8] Chen XQ(2006)Diverse responses of phenology to global changes in a grassland ecosystem Proc Natl Acad Sci USA 103 13740-13744
  • [9] Chen XQ(2001)Phytophenological trends in Switzerland Int J Biometeorol 45 203-207
  • [10] Pan WF(2009)Modelling interannual and spatial variability of leaf senescence for three deciduous tree species in France Agric For Meteorol 149 938-948