A comparative study of convective fluid motion in rotating cavity via Atangana–Baleanu and Caputo–Fabrizio fractal–fractional differentiations

被引:0
|
作者
Kashif Ali Abro
Abdon Atangana
机构
[1] University of the Free State,Institute of Ground Water Studies, Faculty of Natural and Agricultural Sciences
[2] Mehran University of Engineering and Technology,Department of Basic Sciences and Related Studies
[3] China Medical University,Department of Medical Research, China Medical University Hospital
关键词
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, a fractal–fractional mathematical model of convective fluid motion in rotating cavity is investigated inside the ellipsoid with inhomogeneous external heating. The fractal–fractional differential operators namely Caputo, Caputo–Fabrizio and Atangana–Baleanu Dτϵ1,τ1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{D}}_{\tau }^{{\epsilon }_{1},{\tau }_{1}}$$\end{document}, Dτϵ2,τ2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{D}}_{\tau }^{{\epsilon }_{2},{\tau }_{2}}$$\end{document} and Dτϵ3,τ3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{D}}_{\tau }^{{\epsilon }_{3},{\tau }_{3}}$$\end{document}, respectively, are used in the non-linear mathematical model of convective fluid motion in rotating cavity. The numerical algorithms have been generated in terms of newly presented fractal–fractional differential operators on the basis of Adams–Bashforth method to compute the approximate solutions explicitly. The equilibrium points and stability analysis of the fractal–fractional Atangana–Baleanu, Caputo–Fabrizio and Caputo differential operators in Caputo sense have been investigated for non-linear mathematical model of convective fluid motion in rotating cavity. The numerical solutions are simulated in three types of variations (i) presence of fractional parameter without fractal parameter, (ii) presence of fractal parameter without fractional parameter, and (iii) presence of fractal parameter as well as fractional parameter. The chaotic behavior of convective fluid motion in rotating cavity based on each fractal–fractional differential operator has been highlighted as (a) projection on the x–y plane, (b) projection on the x–z plane, (c) projection on the y–z plane and (d) projection on the xyz\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$xyz$$\end{document} plane in three dimensions.
引用
收藏
相关论文
共 31 条
  • [1] A comparative study of convective fluid motion in rotating cavity via Atangana-Baleanu and Caputo-Fabrizio fractal-fractional differentiations
    Abro, Kashif Ali
    Atangana, Abdon
    EUROPEAN PHYSICAL JOURNAL PLUS, 2020, 135 (02):
  • [2] A comparative study of Atangana-Baleanu and Caputo-Fabrizio fractional derivatives to the convective flow of a generalized Casson fluid
    Sheikh, Nadeem Ahmad
    Ali, Farhad
    Saqib, Muhammad
    Khan, Ilyas
    Jan, Syed Aftab Alam
    EUROPEAN PHYSICAL JOURNAL PLUS, 2017, 132 (01):
  • [3] A comparative study of Atangana-Baleanu and Caputo-Fabrizio fractional derivatives to the convective flow of a generalized Casson fluid
    Nadeem Ahmad Sheikh
    Farhad Ali
    Muhammad Saqib
    Ilyas Khan
    Syed Aftab Alam Jan
    The European Physical Journal Plus, 132
  • [4] Study of Time Fractional Burgers' Equation using Caputo, Caputo-Fabrizio and Atangana-Baleanu Fractional Derivatives
    Doley, Swapnali
    Kumar, A. Vanav
    Singh, Karam Ratan
    Jino, L.
    ENGINEERING LETTERS, 2022, 30 (03)
  • [5] Study of fractional forced KdV equation with Caputo-Fabrizio and Atangana-Baleanu-Caputo differential operators
    AlBaidani, Mashael M.
    Aljuaydi, Fahad
    Alharthi, N. S.
    Khan, Adnan
    Ganie, Abdul Hamid
    AIP ADVANCES, 2024, 14 (01)
  • [6] Fractional Model of Couple Stress Fluid for Generalized Couette Flow: A Comparative Analysis of Atangana-Baleanu and Caputo-Fabrizio Fractional Derivatives
    Arif, Muhammad
    All, Farhad
    Sheikh, Nadeem Ahmad
    Khan, Ilyas
    Nisar, Kottakkaran Sooppy
    IEEE ACCESS, 2019, 7 : 88643 - 88655
  • [7] A comparative mathematical analysis of RL and RC electrical circuits via Atangana-Baleanu and Caputo-Fabrizio fractional derivatives
    Abro, Kashif Ali
    Memon, Anwar Ahmed
    Uqaili, Muhammad Aslam
    EUROPEAN PHYSICAL JOURNAL PLUS, 2018, 133 (03):
  • [8] A comparative mathematical analysis of RL and RC electrical circuits via Atangana-Baleanu and Caputo-Fabrizio fractional derivatives
    Kashif Ali Abro
    Anwar Ahmed Memon
    Muhammad Aslam Uqaili
    The European Physical Journal Plus, 133
  • [9] A comparative analysis of electromechanical model of piezoelectric actuator through Caputo-Fabrizio and Atangana-Baleanu fractional derivatives
    Abro, Kashif Ali
    Atangana, Abdon
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2020, 43 (17) : 9681 - 9691
  • [10] Comparative analysis for radiative slip flow of magnetized viscous fluid with mixed convection features: Atangana-Baleanu and Caputo-Fabrizio fractional simulations
    Khan, M. Ijaz
    Raza, Ali
    Naseem, Maria
    Al-Khaled, Kamel
    Khan, Sami Ullah
    Khan, M. Imran
    El-Zahar, Essam Roshdy
    Malik, M. Y.
    CASE STUDIES IN THERMAL ENGINEERING, 2021, 28