Secondary critical exponent, large time behavior and life span for a quasilinear parabolic equation with slowly decaying initial values

被引:0
作者
Yongsheng Mi
Chunlai Mu
Rong Zeng
机构
[1] Chongqing University,College of Mathematics and Statistics
[2] Yangtze Normal University,College of Mathematics and Computer Sciences
来源
Zeitschrift für angewandte Mathematik und Physik | 2011年 / 62卷
关键词
Blow-up; Global existence; Critical exponent; Large time behavior; Life span; 35B33; 35k15; 35K65;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we consider the positive solution of the Cauchy problem for the following doubly degenerate parabolic equation \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u_t-{\rm div}(|\nabla u|^{p} \nabla u^m)=u^q$$\end{document}with p > 0, q > 1,m > 1, and initial value decaying at infinity and give a new secondary critical exponent for the existence of global and nonglobal solutions. Furthermore, the large time behavior and the life spans of solutions are also studied.
引用
收藏
页码:961 / 978
页数:17
相关论文
共 67 条
  • [1] Afanas’eva N.V.(2004)Fujita type theorems for quasilinear parabolic equations with initial data slowly decaying to zero Sb. Math. 195 459-478
  • [2] Tedeev A.F.(1983)Continuity of the gradient for weak solutions of degenerate parabolic equation J. Math. Pures Appl. 62 253-268
  • [3] Alikakos N.D.(1999)A Fujita type result for a degenerate Neumann problem in domains with noncompact boundary J. Math. Anal. Appl. 231 543-567
  • [4] Evans L.C.(1998)Optimal bounds and blow-up phenomena for parabolic problems in narrowing domains Proc. Roy. Soc. Edinb. Sect. A. 128 1163-1180
  • [5] Andreucci D.(2000)The role of critical exponents in blow-up theorems, The sequel J. Math. Anal. Appl. 243 85-126
  • [6] Tedeev A.F.(1992)Uniqueness of very singular self-similar solution of a quasilinear degenerate parabolic equation with absorption Publ. Math. 36 19-38
  • [7] Andreucci D.(1985)Höder estimates for nonlinear degenerate parabolic system J. Reine Angew. Math. 357 1-22
  • [8] Tedeev A.F.(1989)On the Cauchy problem and initial traces for a degenerate parabolic equation Trans. Am. Math. Soc. 314 187-224
  • [9] Deng K.(1987)Blow-up of solutions of nonlinear degenerate parabolic equations Arch. Ration. Mech. Anal. 96 55-80
  • [10] Levine H.A.(1966)On the blowing up of solutions of the Cauchy problem for J. Fac. Sci. Univ. Tokyo Sec. A 16 105-113