Continuum of positive solutions of superlinear fractional Laplacian problems

被引:1
作者
Chhetri, Maya [1 ]
Girg, Petr [2 ]
Hollifield, Elliott [3 ]
机构
[1] Univ North Carolina Greensboro, Dept Math & Stat, Greensboro, NC 27402 USA
[2] Univ West Bohemia, European Ctr Excellence, NTIS, Univerzitni 8, Plzen 30100, Czech Republic
[3] Univ North Carolina Pembroke, Dept Math & Comp Sci, Pembroke, NC 28372 USA
来源
PARTIAL DIFFERENTIAL EQUATIONS AND APPLICATIONS | 2022年 / 3卷 / 01期
关键词
Fractional Laplacian; Superlinear; Positive weak solution; Bifurcation from infinity; DIFFUSION; EXISTENCE; EQUATIONS;
D O I
10.1007/s42985-021-00144-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We discuss the existence of a continuum of positive weak solutions to a fractional Laplacian problem involving superlinear reaction term when a bifurcation parameter is small. We employ degree theory combined with a re-scaling argument, boundary analysis, and a continuation theorem to obtain our result.
引用
收藏
页数:11
相关论文
共 43 条
[1]   On the fractional Lazer-McKenna conjecture with superlinear potential [J].
Abdellaoui, B. ;
Dieb, A. ;
Mahmoudi, F. .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2019, 58 (01)
[2]  
Allegretto W., 1992, DIFFERENTIAL INTEGRA, V5, P95
[3]  
Ambrosetti A., 1994, Differential Integral Equations, V7, P655
[4]   Multiplicity of positive solutions for a class of fractional Schrodinger equations via penalization method [J].
Ambrosio, Vincenzo .
ANNALI DI MATEMATICA PURA ED APPLICATA, 2017, 196 (06) :2043-2062
[5]  
[Anonymous], 2016, Encyclopedia of Mathematics and its Applications
[6]   A critical fractional equation with concave convex power nonlinearities [J].
Barrios, B. ;
Colorado, E. ;
Servadei, R. ;
Soria, F. .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2015, 32 (04) :875-900
[7]   A priori bounds and existence of solutions for some nonlocal elliptic problems [J].
Barrios, Begona ;
Del Pezzo, Leandro ;
Garcia-Melian, Jorge ;
Quaas, Alexander .
REVISTA MATEMATICA IBEROAMERICANA, 2018, 34 (01) :195-220
[8]   Local Elliptic Regularity for the Dirichlet Fractional Laplacian [J].
Biccari, Umberto ;
Warma, Mahamadi ;
Zuazua, Enrique .
ADVANCED NONLINEAR STUDIES, 2017, 17 (02) :387-409
[9]  
Bisci GM, 2017, DIFFER INTEGRAL EQU, V30, P641
[10]   Semilinear Dirichlet problem for the fractional Laplacian [J].
Bogdan, Krzysztof ;
Jarohs, Sven ;
Kania, Edyta .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2020, 193 (193)