Gap sequences of self-conformal sets

被引:0
作者
Juan Deng
Qin Wang
Lifeng Xi
机构
[1] ShenZhen University,Department of Mathematics
[2] Zhejiang Wanli University,School of Computer Science and Information Technology
[3] Zhejiang Wanli University,Institute of Mathematics
来源
Archiv der Mathematik | 2015年 / 104卷
关键词
Fractal; Gap sequence; Self-conformal set; 28A80;
D O I
暂无
中图分类号
学科分类号
摘要
This paper discusses the gap sequences of self-conformal sets satisfying the strong separation condition.
引用
收藏
页码:391 / 400
页数:9
相关论文
共 14 条
  • [1] Besicovitch A.S.(1954)On the complementary intervals of a linear closed set of zero Lebesgue measure J. London Math. Soc. 29 449-459
  • [2] Taylor S. J.(1992)On the Lipschitz equivalence of Cantor sets Mathematika 39 223-233
  • [3] Falconer K.J.(2007)Dimension functions of Cantor sets Proc. Amer. Math. Soc. 135 3151-3161
  • [4] Marsh D.T.(1984)The Hausdorff dimension of general Sierpinski Carpets Nagoya Math. J. 96 1-9
  • [5] Garcia I.(2008)Gap sequence, Lipschitz equivalence and box dimension of fractal sets Nonlinearity 21 1339-1347
  • [6] Molter U.(1981)Douze définitions de la densité logarithmique C. R. Acad. Sci. Paris, Ser. I 293 549-552
  • [7] Scotto R.(2009)Category and dimensions for cut-out sets J. Math. Anal. Appl. 358 125-135
  • [8] McMullen C.(undefined)undefined undefined undefined undefined-undefined
  • [9] Rao H.(undefined)undefined undefined undefined undefined-undefined
  • [10] Ruan H.J.(undefined)undefined undefined undefined undefined-undefined