A Homotopy Method for Parameter Estimation of Nonlinear Differential Equations with Multiple Optima

被引:0
|
作者
Wenrui Hao
机构
[1] The Penn State University,Department of Mathematics
来源
Journal of Scientific Computing | 2018年 / 74卷
关键词
Biological systems; Parameter estimation; Homotopy continuation method;
D O I
暂无
中图分类号
学科分类号
摘要
A numerical method for estimating multiple parameter values of nonlinear systems arising from biology is presented. The uncertain parameters are modeled as random variables. Then the solutions are expressed as convergent series of orthogonal polynomial expansions in terms of the input random parameters. Homotopy continuation method is employed to solve the resulting polynomial system, and more importantly, to compute the multiple optimal parameter values. Several numerical examples, from a single equation to problems with relatively complicated forms of governing equations, are used to demonstrate the robustness and effectiveness of this numerical method.
引用
收藏
页码:1314 / 1324
页数:10
相关论文
共 50 条
  • [41] Solution of coupled system of nonlinear differential equations using homotopy analysis method
    Mehdi Ganjiani
    Hossein Ganjiani
    Nonlinear Dynamics, 2009, 56 : 159 - 167
  • [42] A reliable algorithm of homotopy analysis method for solving nonlinear fractional differential equations
    Odibat, Zaid
    Momani, Shaher
    Xu, Hang
    APPLIED MATHEMATICAL MODELLING, 2010, 34 (03) : 593 - 600
  • [43] Extension of the Homotopy Perturbation Method for Solving Nonlinear Differential-Difference Equations
    Mousa, Mohamed Medhat
    Kaltayev, Aidarkan
    Bulut, Hasan
    ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 2010, 65 (12): : 1060 - 1064
  • [44] A new homotopy perturbation method for system of nonlinear integro-differential equations
    Aminikhah, Hossein
    Salahi, Maziar
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2010, 87 (05) : 1186 - 1194
  • [45] Solving Nonlinear Fractional Partial Differential Equations Using the Homotopy Analysis Method
    Dehghan, Mehdi
    Manafian, Jalil
    Saadatmandi, Abbas
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2010, 26 (02) : 448 - 479
  • [46] Bayesian Parameter Estimation of Nonlinear Differential Equations Using Automatic Differentiation
    Park, Damdae
    Park, Seongeon
    Kim, Jung Hun
    Lee, Jong Min
    2018 18TH INTERNATIONAL CONFERENCE ON CONTROL, AUTOMATION AND SYSTEMS (ICCAS), 2018,
  • [47] A wavelet multiscale-homotopy method for the parameter identification problem of partial differential equations
    Liu, Tao
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2016, 71 (07) : 1519 - 1523
  • [48] A METHOD OF ESTIMATION FOR SOLUTION OF INTEGRAL AND DIFFERENTIAL EQUATIONS DEPENDING ON A PARAMETER
    SZAFRANIEC, FH
    BULLETIN DE L ACADEMIE POLONAISE DES SCIENCES-SERIE DES SCIENCES MATHEMATIQUES ASTRONOMIQUES ET PHYSIQUES, 1968, 16 (12): : 947 - +
  • [49] Convergence and Error Estimation of a New Formulation of Homotopy Perturbation Method for Classes of Nonlinear Integral/Integro-Differential Equations
    Mousa, Mohamed M.
    Alsharari, Fahad
    MATHEMATICS, 2021, 9 (18)
  • [50] A Homotopy Method with Adaptive Basis Selection for Computing Multiple Solutions of Differential Equations
    Hao, Wenrui
    Hesthaven, Jan
    Lin, Guang
    Zheng, Bin
    JOURNAL OF SCIENTIFIC COMPUTING, 2020, 82 (01)