A Homotopy Method for Parameter Estimation of Nonlinear Differential Equations with Multiple Optima

被引:0
|
作者
Wenrui Hao
机构
[1] The Penn State University,Department of Mathematics
来源
Journal of Scientific Computing | 2018年 / 74卷
关键词
Biological systems; Parameter estimation; Homotopy continuation method;
D O I
暂无
中图分类号
学科分类号
摘要
A numerical method for estimating multiple parameter values of nonlinear systems arising from biology is presented. The uncertain parameters are modeled as random variables. Then the solutions are expressed as convergent series of orthogonal polynomial expansions in terms of the input random parameters. Homotopy continuation method is employed to solve the resulting polynomial system, and more importantly, to compute the multiple optimal parameter values. Several numerical examples, from a single equation to problems with relatively complicated forms of governing equations, are used to demonstrate the robustness and effectiveness of this numerical method.
引用
收藏
页码:1314 / 1324
页数:10
相关论文
共 50 条
  • [31] Application of Homotopy Perturbation Method and Variational Iteration Method to Nonlinear Oscillator Differential Equations
    A. Barari
    M. Omidvar
    Abdoul R. Ghotbi
    D. D. Ganji
    Acta Applicandae Mathematicae, 2008, 104 : 161 - 171
  • [32] On homotopy method to parameter estimation for generalized nonlinear Gauss-Helmert model
    Hu, Chuan
    Shi, Zonghao
    Ren, Daqin
    Cehui Xuebao/Acta Geodaetica et Cartographica Sinica, 2024, 53 (11): : 2178 - 2188
  • [33] Spectral Homotopy Analysis Method for Solving Nonlinear Volterra Integro Differential Equations
    Atabakan, Zohreh Pashazadeh
    Nasab, Aliasghar Kazemi
    Kilicman, Adem
    MALAYSIAN JOURNAL OF MATHEMATICAL SCIENCES, 2014, 8 : 153 - 161
  • [34] Solution of coupled system of nonlinear differential equations using homotopy analysis method
    Ganjiani, Mehdi
    Ganjiani, Hossein
    NONLINEAR DYNAMICS, 2009, 56 (1-2) : 159 - 167
  • [35] Fractional generalised homotopy analysis method for solving nonlinear fractional differential equations
    S. R. Saratha
    M. Bagyalakshmi
    G. Sai Sundara Krishnan
    Computational and Applied Mathematics, 2020, 39
  • [36] A one-step optimal homotopy analysis method for nonlinear differential equations
    Niu, Zhao
    Wang, Chun
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2010, 15 (08) : 2026 - 2036
  • [37] He's homotopy perturbation method for nonlinear differential-difference equations
    Yildirim, Ahmet
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2010, 87 (05) : 992 - 996
  • [38] Solving Nonlinear or Stiff Differential Equations by Laplace Homotopy Analysis Method(LHAM)
    Chong, Fook Seng
    Lem, Kong Hoong
    Wong, Hui Lin
    22ND NATIONAL SYMPOSIUM ON MATHEMATICAL SCIENCES (SKSM22), 2015, 1682
  • [39] Homotopy method of fundamental solutions for solving certain nonlinear partial differential equations
    Tsai, Chia-Cheng
    ENGINEERING ANALYSIS WITH BOUNDARY ELEMENTS, 2012, 36 (08) : 1226 - 1234
  • [40] Fractional generalised homotopy analysis method for solving nonlinear fractional differential equations
    Saratha, S. R.
    Bagyalakshmi, M.
    Krishnan, G.
    COMPUTATIONAL & APPLIED MATHEMATICS, 2020, 39 (02):