Approximation algorithm for the multicovering problem

被引:0
作者
Abbass Gorgi
Mourad El Ouali
Anand Srivastav
Mohamed Hachimi
机构
[1] University Ibn Zohr,
[2] Christian Albrechts University,undefined
来源
Journal of Combinatorial Optimization | 2021年 / 41卷
关键词
Integer linear programs; Hypergraphs; Approximation algorithm; Randomized rounding; Set cover and set multicover; -matching;
D O I
暂无
中图分类号
学科分类号
摘要
Let H=(V,E)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {H}=(V,\mathcal {E})$$\end{document} be a hypergraph with maximum edge size ℓ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell $$\end{document} and maximum degree Δ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varDelta $$\end{document}. For a given positive integers bv\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$b_v$$\end{document}, v∈V\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$v\in V$$\end{document}, a set multicover in H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {H}$$\end{document} is a set of edges C⊆E\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C \subseteq \mathcal {E}$$\end{document} such that every vertex v in V belongs to at least bv\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$b_v$$\end{document} edges in C. Set multicover is the problem of finding a minimum-cardinality set multicover. Peleg, Schechtman and Wool conjectured that for any fixed Δ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varDelta $$\end{document} and b:=minv∈Vbv\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$b:=\min _{v\in V}b_{v}$$\end{document}, the problem of set multicover is not approximable within a ratio less than δ:=Δ-b+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\delta :=\varDelta -b+1$$\end{document}, unless P=NP\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {P}=\mathcal {NP}$$\end{document}. Hence it’s a challenge to explore for which classes of hypergraph the conjecture doesn’t hold. We present a polynomial time algorithm for the set multicover problem which combines a deterministic threshold algorithm with conditioned randomized rounding steps. Our algorithm yields an approximation ratio of max148149δ,1-(b-1)eδ494ℓδ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\max \left\{ \frac{148}{149}\delta , \left( 1- \frac{ (b-1)e^{\frac{\delta }{4}}}{94\ell } \right) \delta \right\} $$\end{document} for b≥2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$b\ge 2$$\end{document} and δ≥3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\delta \ge 3$$\end{document}. Our result not only improves over the approximation ratio presented by El Ouali et al. (Algorithmica 74:574, 2016) but it’s more general since we set no restriction on the parameter ℓ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell $$\end{document}. Moreover we present a further polynomial time algorithm with an approximation ratio of 56δ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\frac{5}{6}\delta $$\end{document} for hypergraphs with ℓ≤(1+ϵ)ℓ¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell \le (1+\epsilon )\bar{\ell }$$\end{document} for any fixed ϵ∈[0,12]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\epsilon \in [0,\frac{1}{2}]$$\end{document}, where ℓ¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\bar{\ell }$$\end{document} is the average edge size. The analysis of this algorithm relies on matching/covering duality due to Ray-Chaudhuri (1960), which we convert into an approximative form. The second performance disprove the conjecture of Peleg et al. for a large subclass of hypergraphs.
引用
收藏
页码:433 / 450
页数:17
相关论文
共 27 条
[1]  
Bar-Yehuda R(2001)Using homogeneous weights for approximating the partial cover problem J Algorithms 39 137-144
[2]  
Chvatal V(1979)A greedy heuristic for the set-covering problem Math Oper Res 4 233-235
[3]  
Dobson G(1982)Worst-case analysis of greedy heuristics for integer programming with nonnegative data Math Oper Res 7 515-531
[4]  
El Ouali M(2014)A randomised approximation algorithm for the hitting set problem Theor Comput Sci 555 23-34
[5]  
Fohlin H(2016)An approximation algorithm for the partial vertex cover problem in hypergraphs J Comb Optim 31 846-84
[6]  
Srivastav A(2016)Randomized approximation for the set multicover problem in hypergraphs Algorithmica 74 574-40
[7]  
El Ouali M(2004)Approximation algorithms for partial covering problems J Algorithms 53 55-556
[8]  
Fohlin H(1986)A fast approximation algorithm for the multicovering problem Discrete Appl Math 15 35-278
[9]  
Srivastav A(1982)Approximation algorithms for the set covering and vertex cover problems SIAM J Comput 11 555-349
[10]  
El Ouali M(1974)Approximation algorithms for combinatorial problems J Comput Syst Sci 9 256-390