Programmable criteria for strong ℋ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal {H}$\end{document}-tensors

被引:3
作者
Yaotang Li
Qilong Liu
Liqun Qi
机构
[1] Yunnan University,School of Mathematics and Statistics
[2] The Hong Kong Polytechnic University,Department of Applied Mathematics
关键词
Strong ; -tensors; Positive semidefiniteness; Irreducible;
D O I
10.1007/s11075-016-0145-4
中图分类号
学科分类号
摘要
Strong ℋ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal {H}$\end{document}-tensors play an important role in identifying positive semidefiniteness of even-order real symmetric tensors. We provide several simple practical criteria for identifying strong ℋ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal {H}$\end{document}-tensors. These criteria only depend on the elements of the tensors; therefore, they are easy to be verified. Meanwhile, a sufficient and necessary condition of strong ℋ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal {H}$\end{document}-tensors is obtained. We also propose an algorithm for identifying the strong ℋ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal {H}$\end{document}-tensors based on these criterions. Some numerical results show the feasibility and effectiveness of the algorithm.
引用
收藏
页码:199 / 221
页数:22
相关论文
共 29 条
[21]   Several New Estimates of the Minimum H-eigenvalue for Nonsingular M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {M}$$\end{document}-tensors [J].
Jingjing Cui ;
Guohua Peng ;
Quan Lu ;
Zhengge Huang .
Bulletin of the Malaysian Mathematical Sciences Society, 2019, 42 (3) :1213-1236
[22]   Chain Rules for a Proper ε\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon $$\end{document}-Subdifferential of Vector Mappings [J].
César Gutiérrez ;
Lidia Huerga ;
Vicente Novo ;
Lionel Thibault .
Journal of Optimization Theory and Applications, 2015, 167 (2) :502-526
[23]   A Notion of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\boldsymbol{\lambda}$$\end{document}-Fibonacci Statistical Convergence of Sequences of Numbers [J].
Ibrahim Sulaiman Ibrahim ;
María del Carmen Listán-García ;
Rifat Colak .
Lobachevskii Journal of Mathematics, 2024, 45 (10) :5020-5031
[24]   Subdirect sums of strong SDD1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$SDD_{1}$$\end{document} matrices [J].
Fude Zhang ;
Deshu Sun .
Computational and Applied Mathematics, 2024, 43 (3)
[25]   A new preconditioner of the tensor splitting iterative method for solving multi-linear systems with M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {M}$$\end{document}-tensors [J].
Lu-Bin Cui ;
Xiao-Qing Zhang ;
Shi-Liang Wu .
Computational and Applied Mathematics, 2020, 39 (3)
[26]   Improving the Gauss–Seidel iterative method for solving multi-linear systems with M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {M}$$\end{document}-tensors [J].
Malihe Nobakht-Kooshkghazi ;
Mehdi Najafi-Kalyani .
Japan Journal of Industrial and Applied Mathematics, 2024, 41 (2) :1061-1077
[27]   Stochastic R0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R_0$$\end{document} tensors to stochastic tensor complementarity problems [J].
Maolin Che ;
Liqun Qi ;
Yimin Wei .
Optimization Letters, 2019, 13 (2) :261-279
[28]   A general preconditioner accelerated SOR-type iterative method for multi-linear systems with Z\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {Z}}$$\end{document}-tensors [J].
Lu-Bin Cui ;
Yu-Dong Fan ;
Yu-Tao Zheng .
Computational and Applied Mathematics, 2022, 41 (1)
[29]   p-Norm B-Tensors and p-Norm B0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$B_0$$\end{document}-Tensors [J].
Qilong Liu ;
Qingshui Liao .
Bulletin of the Iranian Mathematical Society, 2020, 46 (5) :1421-1435