Random attractors via pathwise mild solutions for stochastic parabolic evolution equations

被引:0
作者
Christian Kuehn
Alexandra Neamţu
Stefanie Sonner
机构
[1] Technical University of Munich (TUM),Faculty of Mathematics
[2] Bielefeld University,Faculty of Mathematics
[3] Radboud University Nijmegen,IMAPP–Mathematics
来源
Journal of Evolution Equations | 2021年 / 21卷
关键词
Stochastic parabolic evolution equations; Pathwise mild solution; Random attractors; Fractal dimension; 60H15; 37H05; 37L55;
D O I
暂无
中图分类号
学科分类号
摘要
We investigate the longtime behavior of stochastic partial differential equations (SPDEs) with differential operators that depend on time and the underlying probability space. In particular, we consider stochastic parabolic evolution problems in Banach spaces with additive noise and prove the existence of random exponential attractors. These are compact random sets of finite fractal dimension that contain the global random attractor and are attracting at an exponential rate. In order to apply the framework of random dynamical systems, we use the concept of pathwise mild solutions.
引用
收藏
页码:2631 / 2663
页数:32
相关论文
共 42 条
[1]  
Acquistapace P(1987)A unified approach to abstract linear nonautonomous parabolic equations Rend. Sem. Mat. Univ. Padova 78 47-107
[2]  
Terreni B(1986)Quasilinear evolution equations and parabolic systems Trans. Amer. Math. Soc. 293 191-227
[3]  
Amann H(2009)Random attractors for stochastic reaction–diffusion equations on unbounded domains J. Differential. Equat. 246 845-869
[4]  
Bates P(2014)Pathwise solutions and attractors for retarded SPDEs with time smooth diffusion coefficients Discrete Contin. Dyn. Syst. 34 3945-3968
[5]  
Lu K(2010)Invariant manifolds for random and stochastic partial differential equations Adv. Nonlinear Stud. 10 23-52
[6]  
Wang B(2017)Random pullback exponential attractors: general existence results for random dynamical systems in Banach spaces Discrete Contin. Dyn. Syst. 37 6383-6403
[7]  
Bessaih H(2014)Pullback exponential attractors for evolution processes in Banach spaces: properties and applications Commun. Pure Appl. Anal. 13 1141-1165
[8]  
Garrido-Atienza M(2013)Pullback exponential attractors for evolution processes in Banach spaces: theoretical results Commun. Pure Appl. Anal. 12 3047-3071
[9]  
Schmalfuß B(1997)Random attractors J. Dyn. Differ. Equ. 9 307-341
[10]  
Caraballo T(1961)-entropy and Amer. Math. Soc. Transl. Ser. 2 277-364