Cacti with the smallest, second smallest, and third smallest Gutman index

被引:0
作者
Shubo Chen
机构
[1] Hunan City University,College of Mathematics
来源
Journal of Combinatorial Optimization | 2016年 / 31卷
关键词
Gutman index; Degree distance; Extremal graph; 05C12; 05C05;
D O I
暂无
中图分类号
学科分类号
摘要
The Gutman index (also known as Schultz index of the second kind) of a graph G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G$$\end{document} is defined as Gut(G)=∑u,v∈V(G)d(u)d(v)d(u,v)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Gut(G)=\sum \nolimits _{u,v\in V(G)}d(u)d(v)d(u, v)$$\end{document}. A graph G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G$$\end{document} is called a cactus if each block of G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G$$\end{document} is either an edge or a cycle. Denote by C(n,k)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {C}(n, k)$$\end{document} the set of connected cacti possessing n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n$$\end{document} vertices and k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k$$\end{document} cycles. In this paper, we give the first three smallest Gutman indices among graphs in C(n,k)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {C}(n, k)$$\end{document}, the corresponding extremal graphs are characterized as well.
引用
收藏
页码:327 / 332
页数:5
相关论文
共 25 条
  • [1] Andova V(2012)Bounds on Gutman Index MATCH Commun Math Comput Chem 67 512-524
  • [2] Dimitrov D(2007)On the index of cactuses with Publ Inst Math Beograd 79 13-18
  • [3] Fink J(2010) vertices MATCH Commun Math Comput Chem 64 767-782
  • [4] Škrekovski R(2009)Extremal modified Schultz index of bicyclic graphs Discret Math 309 3452-3457
  • [5] Borovićanin B(2011)The edge Wiener index of a graph MATCH Commun Math Comput Chem 66 669-708
  • [6] Petrović M(1994)The maximal Gutman index of bicyclic graphs J Chem Inf Comput Sci 34 1087-1089
  • [7] Chen SB(2007)Selected properties of the Schultz molecular topological index MATCH Commun Math Comput Chem 58 193-204
  • [8] Liu WJ(2006)A unified approach to extremal cacti for different indices MATCH Commun Math Comput Chem 56 551-556
  • [9] Dankelmann P(2012)On the Randić index of cacti MATCH Commun Math Comput Chem 68 343-348
  • [10] Gutman I(2010)On the upper bound of Gutman index of graphs Math Commun 15 347-358