Multivariate compactly supported biorthogonal spline wavelets

被引:1
作者
Salvatori M. [1 ]
Soardi P.M. [2 ]
机构
[1] Dipartimento di Matematica, Università di Milano, 20133Milano
[2] Dipartimento di Matematica e Applicazioni, Università di Milano-Bicocca, 20126 Milano
关键词
Mathematics Subject Classification (2000). 42C15, 42C40;
D O I
10.1007/s102310100033
中图分类号
学科分类号
摘要
We study biorthogonal bases of compactly supported wavelets constructed from box splines in ℝN with any integer dilation factor. For a suitable class of box splines we write explicitly dual low-pass filters of arbitrarily high regularity and indicate how to construct the corresponding high-pass filters (primal and dual).
引用
收藏
页码:161 / 179
页数:18
相关论文
共 26 条
[1]  
Bi N., Debnath L., Sun Q., Asymptotic behaviour of M-band scaling functions of Daubechies type, Z. Anal. Anwend., 17, pp. 813-830, (1998)
[2]  
DeBoor C., Hollig K., Riemenschneider S., Box Splines, (1993)
[3]  
Caglar H., Akansu N., A generalized parametric PR-QF design technique based on Bernstein polynomial approximation, IEEE Trans. Signal Processing, 41, pp. 2314-2321, (1993)
[4]  
Chui C.K., Li C., A general framework of multivariate wavelets with duals, Appl. Comp. Harmonic. Anal., 1, pp. 368-390, (1994)
[5]  
Cohen A., Conze J.P., Régularité des bases d'ondelettes et mesures ergodiques, Rev. Mat. Iberaoamer., 8, pp. 351-365, (1992)
[6]  
Cohen A., Daubechies I., Nonseparable bidimensional wavelet bases, Revista Mat. Iberoamer., 9, pp. 51-137, (1993)
[7]  
Cohen A., Daubechies I., Feauveau J.C., Biorthogonal bases of compactly supported wavelets, Comm. Pure Appl. Math., 44, pp. 485-560, (1992)
[8]  
Cohen A., Ryan R.D., Wavelets and Multiscale Signal Processing, (1995)
[9]  
Cohen A., Schlenker J.M., Compactly supported bidimensional wavelet base with hexagonal symmetry, Constr. Approx., 9, pp. 209-236, (1993)
[10]  
Daubechies I., Ten Lectures on Wavelets, (1992)