Sparse coding and dictionary learning with class-specific group sparsity
被引:0
作者:
Yuping Sun
论文数: 0引用数: 0
h-index: 0
机构:South China University of Technology,School of Automation Science and Engineering
Yuping Sun
Yuhui Quan
论文数: 0引用数: 0
h-index: 0
机构:South China University of Technology,School of Automation Science and Engineering
Yuhui Quan
Jia Fu
论文数: 0引用数: 0
h-index: 0
机构:South China University of Technology,School of Automation Science and Engineering
Jia Fu
机构:
[1] South China University of Technology,School of Automation Science and Engineering
[2] South China University of Technology,School of Computer Science and Engineering
[3] South China University of Technology,School of Journalism and Communication
来源:
Neural Computing and Applications
|
2018年
/
30卷
关键词:
Structured sparsity;
Group sparse coding;
Discriminative dictionary learning;
Classification;
D O I:
暂无
中图分类号:
学科分类号:
摘要:
In recent years, sparse coding via dictionary learning has been widely used in many applications for exploiting sparsity patterns of data. For classification, useful sparsity patterns should have discrimination, which cannot be well achieved by standard sparse coding techniques. In this paper, we investigate structured sparse coding for obtaining discriminative class-specific group sparsity patterns in the context of classification. A structured dictionary learning approach for sparse coding is proposed by considering the ℓ2,0\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\ell _{2,0}$$\end{document} norm on each class of data. An efficient numerical algorithm with global convergence is developed for solving the related challenging ℓ2,0\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\ell _{2,0}$$\end{document} minimization problem. The learned dictionary is decomposed into class-specific dictionaries for the classification that is done according to the minimum reconstruction error among all the classes. For evaluation, the proposed method was applied to classifying both the synthetic data and real-world data. The experiments show the competitive performance of the proposed method in comparison with several existing discriminative sparse coding methods.
机构:
Univ London Imperial Coll Sci Technol & Med, Dept Comp, Biomed Image Anal Grp, London SW7 2AZ, EnglandUniv London Imperial Coll Sci Technol & Med, Dept Comp, Biomed Image Anal Grp, London SW7 2AZ, England
Tong, Tong
Wolz, Robin
论文数: 0引用数: 0
h-index: 0
机构:
Univ London Imperial Coll Sci Technol & Med, Dept Comp, Biomed Image Anal Grp, London SW7 2AZ, EnglandUniv London Imperial Coll Sci Technol & Med, Dept Comp, Biomed Image Anal Grp, London SW7 2AZ, England
Wolz, Robin
Coupe, Pierrick
论文数: 0引用数: 0
h-index: 0
机构:
CNRS, UMR 5800, LaBRI, F-33405 Talence, FranceUniv London Imperial Coll Sci Technol & Med, Dept Comp, Biomed Image Anal Grp, London SW7 2AZ, England
Coupe, Pierrick
Hajnal, Joseph V.
论文数: 0引用数: 0
h-index: 0
机构:
Kings Coll London, St Thomas Hosp, Ctr Dev Brain, Div Imaging Sci & Biomed Engn, London SE1 7EH, EnglandUniv London Imperial Coll Sci Technol & Med, Dept Comp, Biomed Image Anal Grp, London SW7 2AZ, England
Hajnal, Joseph V.
Rueckert, Daniel
论文数: 0引用数: 0
h-index: 0
机构:
Univ London Imperial Coll Sci Technol & Med, Dept Comp, Biomed Image Anal Grp, London SW7 2AZ, EnglandUniv London Imperial Coll Sci Technol & Med, Dept Comp, Biomed Image Anal Grp, London SW7 2AZ, England
机构:
Univ London Imperial Coll Sci Technol & Med, Dept Comp, Biomed Image Anal Grp, London SW7 2AZ, EnglandUniv London Imperial Coll Sci Technol & Med, Dept Comp, Biomed Image Anal Grp, London SW7 2AZ, England
Tong, Tong
Wolz, Robin
论文数: 0引用数: 0
h-index: 0
机构:
Univ London Imperial Coll Sci Technol & Med, Dept Comp, Biomed Image Anal Grp, London SW7 2AZ, EnglandUniv London Imperial Coll Sci Technol & Med, Dept Comp, Biomed Image Anal Grp, London SW7 2AZ, England
Wolz, Robin
Coupe, Pierrick
论文数: 0引用数: 0
h-index: 0
机构:
CNRS, UMR 5800, LaBRI, F-33405 Talence, FranceUniv London Imperial Coll Sci Technol & Med, Dept Comp, Biomed Image Anal Grp, London SW7 2AZ, England
Coupe, Pierrick
Hajnal, Joseph V.
论文数: 0引用数: 0
h-index: 0
机构:
Kings Coll London, St Thomas Hosp, Ctr Dev Brain, Div Imaging Sci & Biomed Engn, London SE1 7EH, EnglandUniv London Imperial Coll Sci Technol & Med, Dept Comp, Biomed Image Anal Grp, London SW7 2AZ, England
Hajnal, Joseph V.
Rueckert, Daniel
论文数: 0引用数: 0
h-index: 0
机构:
Univ London Imperial Coll Sci Technol & Med, Dept Comp, Biomed Image Anal Grp, London SW7 2AZ, EnglandUniv London Imperial Coll Sci Technol & Med, Dept Comp, Biomed Image Anal Grp, London SW7 2AZ, England