Symmetry Approach to the Integrability Problem

被引:0
作者
V. É. Adler
A. B. Shabat
R. I. Yamilov
机构
[1] RAS,Mathematical Institute, Ufa Center
[2] RAS,Landau Institute for Theoretical Physics
来源
Theoretical and Mathematical Physics | 2000年 / 125卷
关键词
Mathematical Physic; Related Equation; Integrable System; Integrable Model; Canonical Form;
D O I
暂无
中图分类号
学科分类号
摘要
We review the results of the twenty-year development of the symmetry approach to classifying integrable models in mathematical physics. The generalized Toda chains and the related equations of the nonlinear Schrödinger type, discrete transformations, and hyperbolic systems are central in this approach. Moreover, we consider equations of the Painlevé type, master symmetries, and the problem of integrability criteria for (2+1)-dimensional models. We present the list of canonical forms for (1+1)-dimensional integrable systems. We elaborate the effective tests for integrability and the algorithms for reduction to the canonical form.
引用
收藏
页码:1603 / 1661
页数:58
相关论文
共 120 条
[1]  
Veselov A. P.(1993)undefined Funct. Anal. Appl. 27 81-96
[2]  
Shabat A. B.(1994)undefined Physica D 73 335-351
[3]  
Adler V. E.(1999)undefined Theor. Math. Phys. 121 1397-1408
[4]  
Shabat A. B.(1979)undefined Sov. Phys. Dokl. 24 15-17
[5]  
Ibragimov N. K.(1993)undefined Theor. Math. Phys. 93 1409-1414
[6]  
Shabat A. B.(1987)undefined Theor. Math. Phys. 70 227-240
[7]  
Levi D.(1984)undefined Physica D 13 387-394
[8]  
Ragnisco O.(1984)undefined Sov. Sci. Rev. Sect. C 4 221-280
[9]  
Rodriguez M. A.(1987)undefined Russ. Math. Surv. 42 1-63
[10]  
Burtsev S. P.(1986)undefined Theor. Math. Phys. 64 862-866