Engineering the next-generation of CAR T-cells with CRISPR-Cas9 gene editing

被引:0
|
作者
Alexander Dimitri
Friederike Herbst
Joseph A. Fraietta
机构
[1] University of Pennsylvania,Department of Microbiology, Perelman School of Medicine
[2] University of Pennsylvania,Center for Cellular Immunotherapies, Perelman School of Medicine
[3] University of Pennsylvania,Abramson Cancer Center, Perelman School of Medicine
[4] National Center for Tumor Diseases,Department of Translational Medical Oncology
[5] Dresden and German Cancer Research Center,Department of Pathology and Laboratory Medicine, Perelman School of Medicine
[6] University of Pennsylvania,undefined
来源
Molecular Cancer | / 21卷
关键词
CRISPR; CAR T-cell; Gene editing; Immunotherapy; Cancer;
D O I
暂无
中图分类号
学科分类号
摘要
Chimeric Antigen Receptor (CAR) T-cells represent a breakthrough in personalized cancer therapy. In this strategy, synthetic receptors comprised of antigen recognition, signaling, and costimulatory domains are used to reprogram T-cells to target tumor cells for destruction. Despite the success of this approach in refractory B-cell malignancies, optimal potency of CAR T-cell therapy for many other cancers, particularly solid tumors, has not been achieved. Factors such as T-cell exhaustion, lack of CAR T-cell persistence, cytokine-related toxicities, and bottlenecks in the manufacturing of autologous products have hampered the safety, effectiveness, and availability of this approach. With the ease and accessibility of CRISPR-Cas9-based gene editing, it is possible to address many of these limitations. Accordingly, current research efforts focus on precision engineering of CAR T-cells with conventional CRISPR-Cas9 systems or novel editors that can install desired genetic changes with or without introduction of a double-stranded break (DSB) into the genome. These tools and strategies can be directly applied to targeting negative regulators of T-cell function, directing therapeutic transgenes to specific genomic loci, and generating reproducibly safe and potent allogeneic universal CAR T-cell products for on-demand cancer immunotherapy. This review evaluates several of the ongoing and future directions of combining next-generation CRISPR-Cas9 gene editing with synthetic biology to optimize CAR T-cell therapy for future clinical trials toward the establishment of a new cancer treatment paradigm.
引用
收藏
相关论文
共 50 条
  • [41] Application of CRISPR-Cas9 gene editing for congenital heart disease
    Seok, Heeyoung
    Deng, Rui
    Cowan, Douglas B.
    Wang, Da-Zhi
    CLINICAL AND EXPERIMENTAL PEDIATRICS, 2021, 64 (06) : 269 - 279
  • [42] CRISPR-Cas9 Gene Editing with Nexiguran Ziclumeran for ATTR Cardiomyopathy
    Fontana, Marianna
    Solomon, Scott D.
    Kachadourian, Jessica
    Walsh, Liron
    Rocha, Ricardo
    Lebwohl, David
    Smith, Derek
    Taubel, Jorg
    Gane, Edward J.
    Pilebro, Bjorn
    Adams, David
    Razvi, Yousuf
    Olbertz, Joy
    Haagensen, Alexandra
    Zhu, Peijuan
    Xu, Yuanxin
    Leung, Adia
    Sonderfan, Alison
    Gutstein, David E.
    Gillmore, Julian D.
    NEW ENGLAND JOURNAL OF MEDICINE, 2024, 391 (23): : 2231 - 2241
  • [43] Therapeutic gene editing strategies using CRISPR-Cas9 for the β-hemoglobinopathies
    Papizan, James B.
    Porter, Shaina N.
    Sharma, Akshay
    Pruett-Miller, Shondra M.
    JOURNAL OF BIOMEDICAL RESEARCH, 2021, 35 (02): : 115 - 134
  • [44] Engineering Genes with CRISPR-Cas9
    Luo, Michelle L.
    Beisel, Chase L.
    CHEMICAL ENGINEERING PROGRESS, 2016, 112 (09) : 36 - 41
  • [45] CRISPR-Cas9 Gene Editing for Sickle Cell Disease and β-Thalassemia
    Meisel, Roland
    NEW ENGLAND JOURNAL OF MEDICINE, 2021, 384 (23):
  • [46] CRISPR-Cas9 T Cell Editing for Finnish Founder Diseases
    Mamia, Katariina
    Li, Zhuokun
    Reint, Ganna
    Fatkhutdinov, Nail
    Haugen, Frida
    Gjerdingen, Thea
    Szymanska, Monika
    Labun, Kornel
    Olweus, Johanna
    Haapaniemi, Emma
    MOLECULAR THERAPY, 2022, 30 (04) : 455 - 455
  • [47] Modelling the Cancer Phenotype in the Era of CRISPR-Cas9 Gene Editing
    Stewart, J.
    Banerjee, S.
    Pettitt, S. J.
    Lord, C. J.
    CLINICAL ONCOLOGY, 2020, 32 (02) : 69 - 74
  • [48] CRISPR-Cas9 gene editing: Delivery aspects and therapeutic potential
    Blenke, Erik Oude
    Evers, Martijn J. W.
    Mastrobattista, Enrico
    van der Oost, John
    JOURNAL OF CONTROLLED RELEASE, 2016, 244 : 139 - 148
  • [49] Recent Progress in Regulating CRISPR-Cas9 System for Gene Editing
    Gong Shaohua
    Li Na
    Tang Bo
    ACTA CHIMICA SINICA, 2020, 78 (07) : 634 - 641
  • [50] Is microfluidics the "assembly line" for CRISPR-Cas9 gene-editing?
    Ahmadi, Fatemeh
    Quach, Angela B. V.
    Shih, Steve C. C.
    BIOMICROFLUIDICS, 2020, 14 (06)