Existence of collisional trajectories of Mercury, Mars and Venus with the Earth

被引:0
作者
J. Laskar
M. Gastineau
机构
[1] Astronomie et Systèmes Dynamiques,
[2] IMCCE-CNRS UMR8028,undefined
[3] Observatoire de Paris,undefined
[4] UPMC,undefined
[5] 77 Avenue Denfert-Rochereau,undefined
[6] 75014 Paris,undefined
[7] France ,undefined
来源
Nature | 2009年 / 459卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Numerical modelling of the future evolution of planetary orbits in the Solar System requires computing power on a massive scale, largely because of the element of chaos introduced by the interdependence of the various orbiting masses. Jacques Laskar and Mickael Gastineau have used the JADE teraflop supercomputer to simulate a set of 2,501 solutions for the evolution of the Solar System over a 5-billion-year period, and they find that 1% of the solutions lead to a large increase in Mercury's eccentricity, sufficient to allow collisions with Venus or the Sun. Surprisingly, in one high eccentricity solution, a subsequent decrease of Mercury's eccentricity induces a transfer of angular momentum from the giant planets that destabilizes all the terrestrial planets after about 3.34 billion years, with possible collisions of Mercury, Mars or Venus with the Earth.
引用
收藏
页码:817 / 819
页数:2
相关论文
共 36 条
  • [1] Laskar J(1994)Large scale chaos in the Solar System Astron. Astrophys. 287 L9-L12
  • [2] Laskar J(2008)Chaotic diffusion in the Solar System Icarus 185 312-330
  • [3] Batygin K(2008)On the dynamical stability of the Solar System Astrophys. J. 683 1207-1216
  • [4] Laughlin G(1989)A numerical experiment on the chaotic behaviour of the Solar System Nature 338 237-238
  • [5] Laskar J(1990)The chaotic motion of the Solar System. A numerical estimate of the size of the chaotic zones Icarus 88 266-291
  • [6] Laskar J(1992)Confirmation of resonant structure in the Solar System Icarus 95 148-152
  • [7] Laskar J(1992)Chaotic evolution of the Solar System Science 257 56-62
  • [8] Quinn T(1999)The limits of Earth orbital calculations for geological time scale use Phil. Trans. R. Soc. Lond. A 357 1735-1759
  • [9] Tremaine S(2004)A long term numerical solution for the insolation quantities of the Earth Astron. Astrophys. 428 261-285
  • [10] Sussman GJ(2003)Successive refinements in long-term integrations of planetary orbits Astrophys. J. 592 620-630