Self-orthogonal codes over a non-unital ring and combinatorial matrices

被引:0
作者
Minjia Shi
Shukai Wang
Jon-Lark Kim
Patrick Solé
机构
[1] Anhui University,Key Laboratory of Intelligent Computing and Signal Processing of Ministry of Education, School of Mathematical Sciences
[2] Institute of Information Engineering,State Key Laboratory of Information Security
[3] Chinese Academy of Sciences,School of Mathematical Sciences
[4] Anhui University,Department of Mathematics
[5] Sogang University,undefined
[6] Aix Marseille Univ,undefined
[7] CNRS,undefined
[8] Centrale Marseille,undefined
[9] I2M,undefined
来源
Designs, Codes and Cryptography | 2023年 / 91卷
关键词
Rings; Codes; Formally self-dual codes; Type IV codes; Primary 94 B05; Secondary 16 A10; 05E30;
D O I
暂无
中图分类号
学科分类号
摘要
There is a local ring E of order 4,  without identity for the multiplication, defined by generators and relations as E=⟨a,b∣2a=2b=0,a2=a,b2=b,ab=a,ba=b⟩.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$E=\langle a,b \mid 2a=2b=0,\, a^2=a,\, b^2=b,\,ab=a,\, ba=b\rangle .$$\end{document} We study a special construction of self-orthogonal codes over E,  based on combinatorial matrices related to two-class association schemes, Strongly Regular Graphs (SRG), and Doubly Regular Tournaments (DRT). We construct quasi self-dual codes over E,  and Type IV codes, that is, quasi self-dual codes whose codewords all have even Hamming weight. All these codes can be represented as formally self-dual additive codes over F4.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {F}_4.$$\end{document} The classical invariant theory bound for the weight enumerators of this class of codes improves the known bound on the minimum distance of Type IV codes over E.
引用
收藏
页码:677 / 689
页数:12
相关论文
共 10 条
  • [1] Dougherty ST(1999)Type IV self-dual codes over rings IEEE Trans. Inf. Theory 45 2345-2360
  • [2] Gaborit P(1993)Classification of finite rings of order Math. Mag. 66 248-252
  • [3] Harada M(2010)Formally self-dual additive codes over J. Symb. Comp. 45 787-799
  • [4] Munemasa A(1972)Doubly regular tournaments are equivalent to skew Hadamard matrices J. Comb. Theory (A) 12 332-338
  • [5] Solé P(undefined)undefined undefined undefined undefined-undefined
  • [6] Fine B(undefined)undefined undefined undefined undefined-undefined
  • [7] Han S(undefined)undefined undefined undefined undefined-undefined
  • [8] Kim J-L(undefined)undefined undefined undefined undefined-undefined
  • [9] Reid KB(undefined)undefined undefined undefined undefined-undefined
  • [10] Brown E(undefined)undefined undefined undefined undefined-undefined