HIN-based rating prediction in recommender systems via GCN and meta-learning

被引:0
作者
Mingqiang Zhou
Kunpeng Li
Kailang Dai
Quanwang Wu
机构
[1] Chongqing University,College of Computer Science
[2] Chongqing Key Laboratory of Software Theory and Technolog,undefined
来源
Applied Intelligence | 2023年 / 53卷
关键词
Graph convolutional network; Heterogeneous information network; Meta-learning; Rating prediction; Recommender systems;
D O I
暂无
中图分类号
学科分类号
摘要
Rating prediction is a crucial task for recommender systems, but it has the problem of difficulty in quickly capturing user preference transfer and cold-start problem. Thus, this paper proposes the meta-learning-based rating prediction model for heterogeneous information networks (HIN) called Meta-HRP (HIN-based Rating Prediction) to solve these problems. The model first constructs meta-tasks through meta-paths on HIN and then constructs an embedding representation generator based on graph convolutional network (GCN) and attention mechanism to generate embeddings for users and items. Then the proposed rating prediction meta-learner leverages historical interaction data to learn prior knowledge and rapidly adapts to new items based on a few recent user rating records to timely capture user preference transfer and alleviate the cold-start problem. We validate Meta-HRP with extensive experiments, and the proposed model reduces root mean square error by at least 8.49%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\%$$\end{document} on average over the baselines on two public benchmark datasets. Furthermore, Meta-HRP outperforms the state-of-the-arts in most cold-start cases.
引用
收藏
页码:23271 / 23286
页数:15
相关论文
共 50 条
[31]   Automatic Modulation Classification via Meta-Learning [J].
Hao, Xiaoyang ;
Feng, Zhixi ;
Yang, Shuyuan ;
Wang, Min ;
Jiao, Licheng .
IEEE INTERNET OF THINGS JOURNAL, 2023, 10 (14) :12276-12292
[32]   Dynamic Graph Embedding via Meta-Learning [J].
Mao, Yuren ;
Hao, Yu ;
Cao, Xin ;
Fang, Yixiang ;
Lin, Xuemin ;
Mao, Hua ;
Xu, Zhiqiang .
IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2024, 36 (07) :2967-2979
[33]   An Enhanced LRMC Method for Drug Repositioning via GCN-based HIN Embedding [J].
Sun, Haowen ;
Lyu, Xiaqing ;
Wang, Bei ;
Wang, Yifan ;
Tang, Zhi ;
Liu, Zhenming .
2020 IEEE INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICINE, 2020, :1137-1141
[34]   Meta-Learning via Weighted Gradient Update [J].
Xu, Zhixiong ;
Cao, Lei ;
Chen, Xiliang .
IEEE ACCESS, 2019, 7 :110846-110855
[35]   Video Object Verification via Meta-learning [J].
Onur, Irem Beyza ;
Gurkan, Filiz ;
Gunsel, Bilge .
2022 30TH SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE, SIU, 2022,
[36]   Automated imbalanced classification via meta-learning [J].
Moniz, Nuno ;
Cerqueira, Vitor .
EXPERT SYSTEMS WITH APPLICATIONS, 2021, 178
[37]   Neighboring relation enhanced inductive knowledge graph link prediction via meta-learning [J].
Ben Liu ;
Miao Peng ;
Wenjie Xu ;
Min Peng .
World Wide Web, 2023, 26 :2909-2930
[38]   Neighboring relation enhanced inductive knowledge graph link prediction via meta-learning [J].
Liu, Ben ;
Peng, Miao ;
Xu, Wenjie ;
Peng, Min .
WORLD WIDE WEB-INTERNET AND WEB INFORMATION SYSTEMS, 2023, 26 (05) :2909-2930
[39]   Boosting urban prediction tasks with domain-sharing knowledge via meta-learning [J].
Wang, Dongkun ;
Peng, Jieyang ;
Tao, Xiaoming ;
Duan, Yiping .
INFORMATION FUSION, 2024, 107
[40]   Few-Shot Prediction of Landslide Susceptibility Based on Meta-Learning Paradigm [J].
Chen, Li ;
Ding, Yulin ;
Zhu, Qing ;
Zeng, Haowei ;
Zhang, Liguo ;
Liu, Fei .
Wuhan Daxue Xuebao (Xinxi Kexue Ban)/Geomatics and Information Science of Wuhan University, 2024, 49 (08) :1367-1376