Rating prediction is a crucial task for recommender systems, but it has the problem of difficulty in quickly capturing user preference transfer and cold-start problem. Thus, this paper proposes the meta-learning-based rating prediction model for heterogeneous information networks (HIN) called Meta-HRP (HIN-based Rating Prediction) to solve these problems. The model first constructs meta-tasks through meta-paths on HIN and then constructs an embedding representation generator based on graph convolutional network (GCN) and attention mechanism to generate embeddings for users and items. Then the proposed rating prediction meta-learner leverages historical interaction data to learn prior knowledge and rapidly adapts to new items based on a few recent user rating records to timely capture user preference transfer and alleviate the cold-start problem. We validate Meta-HRP with extensive experiments, and the proposed model reduces root mean square error by at least 8.49%\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\%$$\end{document} on average over the baselines on two public benchmark datasets. Furthermore, Meta-HRP outperforms the state-of-the-arts in most cold-start cases.
机构:
Zhejiang Univ, Sch Software Technol, Hangzhou 310027, Zhejiang, Peoples R ChinaZhejiang Univ, Sch Software Technol, Hangzhou 310027, Zhejiang, Peoples R China
Mao, Yuren
Hao, Yu
论文数: 0引用数: 0
h-index: 0
机构:
Enmotech Co Ltd, Sydney, NSW 2162, AustraliaZhejiang Univ, Sch Software Technol, Hangzhou 310027, Zhejiang, Peoples R China
Hao, Yu
Cao, Xin
论文数: 0引用数: 0
h-index: 0
机构:
Univ New South Wales, Sch Comp Sci & Engn, Sydney, NSW 2052, AustraliaZhejiang Univ, Sch Software Technol, Hangzhou 310027, Zhejiang, Peoples R China
Cao, Xin
Fang, Yixiang
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Univ Hong Kong, Sch Data Sci, Shenzhen 518172, Peoples R ChinaZhejiang Univ, Sch Software Technol, Hangzhou 310027, Zhejiang, Peoples R China
Fang, Yixiang
Lin, Xuemin
论文数: 0引用数: 0
h-index: 0
机构:
Shanghai Jiao Tong Univ, Antai Coll Econ & Management, Shanghai 200240, Peoples R ChinaZhejiang Univ, Sch Software Technol, Hangzhou 310027, Zhejiang, Peoples R China
Lin, Xuemin
Mao, Hua
论文数: 0引用数: 0
h-index: 0
机构:
Univ Northumbria, Dept Comp & Informat Sci, Newcastle Upon Tyne NE1 8ST, EnglandZhejiang Univ, Sch Software Technol, Hangzhou 310027, Zhejiang, Peoples R China
Mao, Hua
Xu, Zhiqiang
论文数: 0引用数: 0
h-index: 0
机构:
MBZUAI, Dept Machine Learning, Abu Dhabi, U Arab EmiratesZhejiang Univ, Sch Software Technol, Hangzhou 310027, Zhejiang, Peoples R China
机构:
Zhejiang Univ, Sch Software Technol, Hangzhou 310027, Zhejiang, Peoples R ChinaZhejiang Univ, Sch Software Technol, Hangzhou 310027, Zhejiang, Peoples R China
Mao, Yuren
Hao, Yu
论文数: 0引用数: 0
h-index: 0
机构:
Enmotech Co Ltd, Sydney, NSW 2162, AustraliaZhejiang Univ, Sch Software Technol, Hangzhou 310027, Zhejiang, Peoples R China
Hao, Yu
Cao, Xin
论文数: 0引用数: 0
h-index: 0
机构:
Univ New South Wales, Sch Comp Sci & Engn, Sydney, NSW 2052, AustraliaZhejiang Univ, Sch Software Technol, Hangzhou 310027, Zhejiang, Peoples R China
Cao, Xin
Fang, Yixiang
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Univ Hong Kong, Sch Data Sci, Shenzhen 518172, Peoples R ChinaZhejiang Univ, Sch Software Technol, Hangzhou 310027, Zhejiang, Peoples R China
Fang, Yixiang
Lin, Xuemin
论文数: 0引用数: 0
h-index: 0
机构:
Shanghai Jiao Tong Univ, Antai Coll Econ & Management, Shanghai 200240, Peoples R ChinaZhejiang Univ, Sch Software Technol, Hangzhou 310027, Zhejiang, Peoples R China
Lin, Xuemin
Mao, Hua
论文数: 0引用数: 0
h-index: 0
机构:
Univ Northumbria, Dept Comp & Informat Sci, Newcastle Upon Tyne NE1 8ST, EnglandZhejiang Univ, Sch Software Technol, Hangzhou 310027, Zhejiang, Peoples R China
Mao, Hua
Xu, Zhiqiang
论文数: 0引用数: 0
h-index: 0
机构:
MBZUAI, Dept Machine Learning, Abu Dhabi, U Arab EmiratesZhejiang Univ, Sch Software Technol, Hangzhou 310027, Zhejiang, Peoples R China