An interface-enriched generalized finite element method for level set-based topology optimization
被引:0
|
作者:
S. J. van den Boom
论文数: 0引用数: 0
h-index: 0
机构:Delft University of Technology (TU Delft),Department of Precision, Microsystems Engineering (PME), Faculty of Mechanical, Maritime, Materials Engineering (3ME)
S. J. van den Boom
J. Zhang
论文数: 0引用数: 0
h-index: 0
机构:Delft University of Technology (TU Delft),Department of Precision, Microsystems Engineering (PME), Faculty of Mechanical, Maritime, Materials Engineering (3ME)
J. Zhang
F. van Keulen
论文数: 0引用数: 0
h-index: 0
机构:Delft University of Technology (TU Delft),Department of Precision, Microsystems Engineering (PME), Faculty of Mechanical, Maritime, Materials Engineering (3ME)
F. van Keulen
A. M. Aragón
论文数: 0引用数: 0
h-index: 0
机构:Delft University of Technology (TU Delft),Department of Precision, Microsystems Engineering (PME), Faculty of Mechanical, Maritime, Materials Engineering (3ME)
A. M. Aragón
机构:
[1] Delft University of Technology (TU Delft),Department of Precision, Microsystems Engineering (PME), Faculty of Mechanical, Maritime, Materials Engineering (3ME)
来源:
Structural and Multidisciplinary Optimization
|
2021年
/
63卷
关键词:
Enriched finite element methods;
Level sets;
Topology optimization;
XFEM/GFEM;
IGFEM;
D O I:
暂无
中图分类号:
学科分类号:
摘要:
During design optimization, a smooth description of the geometry is important, especially for problems that are sensitive to the way interfaces are resolved, e.g., wave propagation or fluid-structure interaction. A level set description of the boundary, when combined with an enriched finite element formulation, offers a smoother description of the design than traditional density-based methods. However, existing enriched methods have drawbacks, including ill-conditioning and difficulties in prescribing essential boundary conditions. In this work, we introduce a new enriched topology optimization methodology that overcomes the aforementioned drawbacks; boundaries are resolved accurately by means of the Interface-enriched Generalized Finite Element Method (IGFEM), coupled to a level set function constructed by radial basis functions. The enriched method used in this new approach to topology optimization has the same level of accuracy in the analysis as the standard finite element method with matching meshes, but without the need for remeshing. We derive the analytical sensitivities and we discuss the behavior of the optimization process in detail. We establish that IGFEM-based level set topology optimization generates correct topologies for well-known compliance minimization problems.
机构:
Chinese Univ Hong Kong, Dept Mech & Automat Engn, Shatin, Hong Kong, Peoples R ChinaChinese Univ Hong Kong, Dept Mech & Automat Engn, Shatin, Hong Kong, Peoples R China
Xing, Xianghua
Wei, Peng
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Univ Hong Kong, Dept Mech & Automat Engn, Shatin, Hong Kong, Peoples R China
S China Univ Technol, Dept Civil Engn, State Key Lab Subtrop Bldg Sci, Guangzhou, Guangdong, Peoples R ChinaChinese Univ Hong Kong, Dept Mech & Automat Engn, Shatin, Hong Kong, Peoples R China
Wei, Peng
Wang, Michael Yu
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Univ Hong Kong, Dept Mech & Automat Engn, Shatin, Hong Kong, Peoples R ChinaChinese Univ Hong Kong, Dept Mech & Automat Engn, Shatin, Hong Kong, Peoples R China