The stability of monomial functions on a restricted domain

被引:0
|
作者
Wolna D. [1 ,2 ]
机构
[1] Instytut Matematyki i Informatyki, Akademii im. Jana Długosza, PL-42-200 Czȩstochowa
[2] Instytut Matematyki, Uniwersytet Śla̧ski, PL-40-007 Katowice
关键词
Abelian group; Functional equations; Functional inequality; Monomial function; Normed space; Stability;
D O I
10.1007/s00010-006-2832-z
中图分类号
学科分类号
摘要
Let ( G\0 ) be a power-associative and square-symmetric groupoid, Y a Banach space. We prove that a mapping f : G → Y is a monomial function of degree m if and only if for every δ > 0 there exists a weakly bounded set V δ ⊂ G such that ||Δ m yf(x) - m!f(y)||≤ δ, (xy) ∉ V δ × Vδ. © Birkhäuser Verlag, Basel, 2006.
引用
收藏
页码:100 / 109
页数:9
相关论文
共 50 条
  • [31] Stability aspects of arithmetic functions
    Kochanek, Tomasz
    ACTA ARITHMETICA, 2008, 132 (01) : 87 - 98
  • [32] Positivity Conditions of Lyapunov Functions for Systems with Slope Restricted Nonlinearities
    Valmorbida, G.
    Drummond, R.
    Duncan, S. R.
    2016 AMERICAN CONTROL CONFERENCE (ACC), 2016, : 258 - 263
  • [33] EQUILIBRIUM POINTS AND THEIR STABILITY IN THE RESTRICTED FOUR-BODY PROBLEM
    Baltagiannis, A. N.
    Papadakis, K. E.
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2011, 21 (08): : 2179 - 2193
  • [34] Stability of domain 4 of the anthrax toxin protective antigen and the effect of the VWA domain of CMG2 on stability
    Mamillapalli, Sireesha
    Miyagi, Masaru
    Bann, James G.
    PROTEIN SCIENCE, 2017, 26 (02) : 355 - 364
  • [35] Attraction Domain estimates combining Lyapunov Functions
    Materassi, Donatello
    Salapaka, Murti V.
    2009 AMERICAN CONTROL CONFERENCE, VOLS 1-9, 2009, : 4007 - 4012
  • [36] Stability and Continuity of Functions of Least Gradient
    Hakkarainen, H.
    Korte, R.
    Lahti, P.
    Shanmugalingam, N.
    ANALYSIS AND GEOMETRY IN METRIC SPACES, 2015, 3 (01): : 123 - 139
  • [37] Semidefinite Lyapunov functions stability and stabilization
    Iggidr, A
    Kalitine, B
    Outbib, R
    MATHEMATICS OF CONTROL SIGNALS AND SYSTEMS, 1996, 9 (02) : 95 - 106
  • [38] Stability of the shifts of a finite number of functions
    Jia, RQ
    JOURNAL OF APPROXIMATION THEORY, 1998, 95 (02) : 194 - 202
  • [39] Polyhedral functions, composite quadratic functions, and equivalent conditions for stability/stabilization
    Hu, Tingshu
    Blanchini, Franco
    47TH IEEE CONFERENCE ON DECISION AND CONTROL, 2008 (CDC 2008), 2008, : 5432 - 5437