The stability of monomial functions on a restricted domain

被引:0
|
作者
Wolna D. [1 ,2 ]
机构
[1] Instytut Matematyki i Informatyki, Akademii im. Jana Długosza, PL-42-200 Czȩstochowa
[2] Instytut Matematyki, Uniwersytet Śla̧ski, PL-40-007 Katowice
关键词
Abelian group; Functional equations; Functional inequality; Monomial function; Normed space; Stability;
D O I
10.1007/s00010-006-2832-z
中图分类号
学科分类号
摘要
Let ( G\0 ) be a power-associative and square-symmetric groupoid, Y a Banach space. We prove that a mapping f : G → Y is a monomial function of degree m if and only if for every δ > 0 there exists a weakly bounded set V δ ⊂ G such that ||Δ m yf(x) - m!f(y)||≤ δ, (xy) ∉ V δ × Vδ. © Birkhäuser Verlag, Basel, 2006.
引用
收藏
页码:100 / 109
页数:9
相关论文
共 50 条
  • [1] Stability of a Monomial Functional Equation on a Restricted Domain
    Lee, Yang-Hi
    MATHEMATICS, 2017, 5 (04)
  • [2] On locally monomial functions
    Gilanyi, A
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 1997, 51 (3-4): : 343 - 361
  • [3] Asymptotic stability of monomial functional equations
    Wolna, D
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 2003, 63 (1-2): : 145 - 156
  • [4] On the stability of monomial functional equations
    Gilányi, A
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 2000, 56 (1-2): : 201 - 212
  • [5] Stability of the Drygas Functional Equation on Restricted Domain
    Magdalena Piszczek
    Joanna Szczawińska
    Results in Mathematics, 2015, 68 : 11 - 24
  • [6] Stability of the Drygas Functional Equation on Restricted Domain
    Piszczek, Magdalena
    Szczawinska, Joanna
    RESULTS IN MATHEMATICS, 2015, 68 (1-2) : 11 - 24
  • [7] On the stability of the monomial functional equation
    Lee, Yang-Hi
    BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2008, 45 (02) : 397 - 403
  • [8] A new class of monomial bent functions
    Canteaut, Anne
    Charpin, Pascale
    Kyureghyan, Gohar M.
    FINITE FIELDS AND THEIR APPLICATIONS, 2008, 14 (01) : 221 - 241
  • [9] REMARKS ON THE STABILITY OF MONOMIAL FUNCTIONAL EQUATIONS
    Cadariu, Liviu
    Radu, Viorel
    FIXED POINT THEORY, 2007, 8 (02): : 201 - 218
  • [10] Concave envelopes of monomial functions over rectangles
    Benson, HP
    NAVAL RESEARCH LOGISTICS, 2004, 51 (04) : 467 - 476