The distance coloring of graphs

被引:0
作者
Lian Ying Miao
Yi Zheng Fan
机构
[1] China University of Mining and Technology,Institute of Mathematics
[2] Anhui University,School of Mathematical Sciences
来源
Acta Mathematica Sinica, English Series | 2014年 / 30卷
关键词
Distance coloring; power graph; spectral radius; 05C15; 05C50;
D O I
暂无
中图分类号
学科分类号
摘要
Let G be a connected graph with maximum degree Δ ≥ 3. We investigate the upper bound for the chromatic number χγ of the power graph Gγ. It was proved that \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\chi _\gamma (G) \leqslant \Delta \tfrac{{(\Delta - 1)^\gamma - 1}} {{\Delta - 2}} + 1 = :M + 1 $\end{document}, where the equality holds if and only if G is a Moore graph. If G is not a Moore graph, and G satisfies one of the following conditions: (1) G is non-regular, (2) the girth g(G) ≤ 2γ − 1, (3) g(G) ≥ 2γ + 2, and the connectivity κ(G) ≥ 3 if γ ≥ 3, κ(G) ≥ 4 but g(G) > 6 if γ = 2, (4) Δ is sufficiently larger than a given number only depending on γ, then χγ(G) ≤ M − 1. By means of the spectral radius λ1(G) of the adjacency matrix of G, it was shown that χ2(G) ≤ λ1(G)2 + 1, where the equality holds if and only if G is a star or a Moore graph with diameter 2 and girth 5, and χγ(G) < λ1(G)γ + 1 γ ≥ 3.
引用
收藏
页码:1579 / 1587
页数:8
相关论文
共 37 条
  • [1] Agnarsson G(2003)Coloring powers of planar graphs SIAM J. Discrete Math. 16 651-662
  • [2] Halldórsson M M(1981)Regular graphs with excess one Discrete Math. 37 147-158
  • [3] Bannai E(1997)A special Discrete Math. 170 231-236
  • [4] Ito T(2008)-coloring for a connected J. Graph Theory 57 65-87
  • [5] Chen G(1980)-chromatic graph Networks 10 87-90
  • [6] Schelp R H(2003)List-coloring the square of a subcubic graph Inform. Process. Lett. 87 51-58
  • [7] Shreve W E(2007)Maximum degree in graphs of diameter 2 Electron. Notes Discrete Math. 29 515-519
  • [8] Cranston D W(2005)Acyclic and Discuss. Math. Graph Theory 25 151-166
  • [9] Kim S-J(1998)-distance coloring of the grid Combin. Prob. Comput. 2 413-422
  • [10] Erdös P(2001)List coloring square of planar graphs Discrete Math. 236 167-177