Integral Van Vleck’s and Kannappan’s functional equations on semigroups

被引:0
作者
Elqorachi Elhoucien
机构
[1] Ibn Zohr University,Department of Mathematics, Faculty of Sciences
来源
Aequationes mathematicae | 2017年 / 91卷
关键词
Semigroup; d’Alembert’s equation; Van Vleck’s equation; Kannappan’s equation; Involution; Multiplicative function; Complex measure; 39B32; 39B52;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we study the solutions of the integral Van Vleck’s functional equation for the sine ∫Sf(xτ(y)t)dμ(t)-∫Sf(xyt)dμ(t)=2f(x)f(y),x,y∈S\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \int _{S}f(x\tau (y)t)d\mu (t)-\int _{S}f(xyt)d\mu (t) =2f(x)f(y),\; x,y\in S \end{aligned}$$\end{document}and the integral Kannappan’s functional equation ∫Sf(xyt)dμ(t)+∫Sf(xτ(y)t)dμ(t)=2f(x)f(y),x,y∈S,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \int _{S}f(xyt)d\mu (t)+\int _{S}f(x\tau (y)t)d\mu (t) =2f(x)f(y),\; x,y\in S, \end{aligned}$$\end{document}where S is a semigroup, τ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau $$\end{document} is an involution of S and μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu $$\end{document} is a measure that is a linear combination of Dirac measures (δzi)i∈I\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\delta _{z_{i}})_{i\in I}$$\end{document}, such that for all i∈I\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$i\in I$$\end{document}, zi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$z_{i}$$\end{document} is contained in the center of S. We express the solutions of the first equation by means of multiplicative functions on S, and we prove that the solutions of the second equation are closely related to the solutions of d’Alembert’s classic functional equation with involution.
引用
收藏
页码:83 / 98
页数:15
相关论文
共 10 条
[1]  
Akkouchi M(1992)Une généralisation des paires de Guelfand Boll. Un. Math. Ital. 7 759-822
[2]  
Bakali A(1998)A class of functional equations on a Locally compact group J. Lond. Math. Soc. 57 694-705
[3]  
Akkouchi M(2009)D’Alembert’s functional equation on topological monoids Publ. Math. Debrecen 75 41-66
[4]  
Bakali A(2003)On generalized d’Alembert and Wilson functional equations Aequationes Math. 66 241-256
[5]  
Khalil I(1968)A functional equation for the cosine Can. Math. Bull. 2 495-498
[6]  
Davison TMK(1910)A functional equation for the sine Ann. Math. Second Ser. 11 161-165
[7]  
Elqorachi E(undefined)undefined undefined undefined undefined-undefined
[8]  
Akkouchi M(undefined)undefined undefined undefined undefined-undefined
[9]  
Kannappan Pl(undefined)undefined undefined undefined undefined-undefined
[10]  
Van Vleck EB(undefined)undefined undefined undefined undefined-undefined