F2[u]F2[u]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {F}}_{2}[u]{\mathbb {F}}_{2}[u] $$\end{document}-additive cyclic codes are asymptotically good

被引:0
作者
Hai Q. Dinh
Bhanu Pratap Yadav
Sachin Pathak
Abhyendra Prasad
Ashish Kumar Upadhyay
Woraphon Yamaka
机构
[1] Kent State University,Department of Mathematics
[2] Indian Institute of Technology Patna,Department of Mathematics
[3] B R A Bihar University,Department of Mathematics, SRAP College
[4] Banaras Hindu University,Department of Mathematics
[5] Chiang Mai University,Centre of Excellence in Econometrics, Faculty of Economics
关键词
Cyclic codes; Codes over mixed alphabets; Relative minimum distance; Asymptotically good codes; 94B05; 94B65;
D O I
10.1007/s12190-022-01771-6
中图分类号
学科分类号
摘要
Let F2[u]=F2+uF2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {F}}_{2}[u]={\mathbb {F}}_{2}+u{\mathbb {F}}_{2}$$\end{document}, u2=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u^2=0$$\end{document}. In this paper, we construct a class of F2[u]F2[u]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {F}}_{2}[u]{\mathbb {F}}_{2}[u]$$\end{document}-additive cyclic codes generated by pairs of polynomials. We discuss their algebraic structure and show that generator matrices can be obtained for all codes in this class. We study asymptotic properties of this class of codes by using a Bernoulli random variable. Moreover, let 0<δ<1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0< \delta < 1$$\end{document} be a real number and k and l be co-prime odd positive integers such that the entropy h2((k+l)δ4)<12,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$h_{2}(\frac{(k+l)\delta }{4})<\frac{1}{2},$$\end{document}  we show that the relative minimum distance converges to δ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\delta $$\end{document} and the rates of the random codes converge to 1k+l\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\frac{1}{k+l}$$\end{document}. Finally, we conclude that the F2[u]F2[u]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {F}}_{2}[u]{\mathbb {F}}_{2}[u] $$\end{document}-additive cyclic codes are asymptotically good and provide some examples for this class of codes.
引用
收藏
页码:1037 / 1056
页数:19
相关论文
共 61 条
[1]  
Abualrub T(2014)-additive cyclic codes IEEE Trans. Inf. Theory 60 1508-1514
[2]  
Siap I(2019)-cyclic codes J. Appl. Math. Comput. 60 327-341
[3]  
Aydin Nuh(2006)Some randomized code constructions from group actions IEEE Trans. Inf. Theory 52 3210-3219
[4]  
Aydogdu I(2009)On quasi-cyclic codes over Appl. Algebra Eng. Commun. Comput. 20 459-480
[5]  
Gursoy F(2010)-linear codes: generator matrices and duality Des. Codes Cryptogr. 54 167-179
[6]  
Bazzi LMJ(2011)Generalized quasi-cyclic codes over Galois rings; structural properties and enumeration Appl. Algebra Eng. Commun. Comput. 22 219-233
[7]  
Mitter SK(2020)Some results on Adv. Math. Commun. 14 555-572
[8]  
Bhaintwal M(2022)-additive cyclic codes Commun. Comput. 60 6342-6347
[9]  
Wasan SK(2016)-additive cyclic codes are asymptotically good, Applicable Algebra in Engineering IEEE Trans. Inf. Theory 62 82-90
[10]  
Borges J(2015)Quasi-cyclic codes of index IEEE Trans. Inf. Theory 24 1593-1597