Spectral Stability of the ∂¯-\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\overline{\partial }}-$$\end{document}Neumann Laplacian: Domain Perturbations

被引:0
作者
Siqi Fu
Weixia Zhu
机构
[1] Rutgers University,Department of Mathematical Sciences
[2] University of Vienna,Faculty of Mathematics
关键词
The ; -Neumann Laplacian; Spectrum; Stability; Pseudoconvex domain; Property (; ); Finite type condition; 32W05; 32G05; 35J25; 35P15;
D O I
10.1007/s12220-021-00769-z
中图分类号
学科分类号
摘要
We study spectral stability of the ∂¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\bar{\partial }}$$\end{document}-Neumann Laplacian on a bounded domain in Cn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {C}}^n$$\end{document} when the underlying domain is perturbed. In particular, we establish upper semi-continuity properties for the variational eigenvalues of the ∂¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\bar{\partial }}$$\end{document}-Neumann Laplacian on bounded pseudoconvex domains in Cn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {C}}^n$$\end{document}, lower semi-continuity properties on pseudoconvex domains that satisfy property (P), and quantitative estimates on smooth bounded pseudoconvex domains of finite D’Angelo type in Cn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {C}}^n$$\end{document}.
引用
收藏
相关论文
共 30 条
[1]  
Brezis H(1997)Hardy’s inequalities revisited Ann. Scuola Normale Super. Pisa-Classe Sci. 4 217-237
[2]  
Marcus M(2007)Spectral stability of general non-negative self-adjoint operators with applications to Neumann-type operators J. Differ. Equ. 233 345-379
[3]  
Burenkov V(1983)Necessary conditions for subellipticity of the Ann. Math. 117 147-171
[4]  
Lamberti P(1984)-Neumann problem Ann. Math. 120 529-586
[5]  
Catlin D(1987)Boundary invariants of pseudoconvex domains Ann. Math. 126 131-191
[6]  
Catlin D(2005)Subelliptic estimates for the Adv. Math. 197 1-40
[7]  
Catlin D(1982)-Neumann problem on pseudoconvex domains Ann. Math. 115 615-637
[8]  
Christ M(1977)Compactness in the Math. Ann. 225 275-292
[9]  
Fu S(2008)-Neumann problem, magnetic Schrödinger operators, and the Aharonov-Bohm effect Adv. Math. 219 568-603
[10]  
D’Angelo J(1998)Real hypersurfaces, orders of contact, and applications J. Funct. Anal. 159 629-641