Exact summation of leading logs around TT¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ T\overline{T} $$\end{document} deformation of O(N + 1)-symmetric 2D QFTs

被引:0
作者
Jonas Linzen
Maxim V. Polyakov
Kirill M. Semenov-Tian-Shansky
Nika S. Sokolova
机构
[1] Institute of Theoretical Physics II,Ruhr University Bochum, Faculty of Physics and Astronomy
[2] National Research Centre “Kurchatov Institute”: Petersburg Nuclear Physics Institute,Higher School of Economics
[3] National Research University,Faculty of Physics
[4] St. Petersburg State University,Department of Physics & Astronomy
[5] Perimeter Institute for Theoretical Physics,undefined
[6] University of Waterloo,undefined
关键词
Effective Field Theories; Field Theories in Lower Dimensions; Renormalization Group; Sigma Models;
D O I
10.1007/JHEP05(2021)266
中图分类号
学科分类号
摘要
We consider a general (beyond TT¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ T\overline{T} $$\end{document}) deformation of the 2D O(N + 1) σ-model by the irrelevant dimension-four operators. The theory deformed in this most general way is not integrable, and the S-matrix loses its factorization properties. We perform the all-order summation of the leading infrared logs for the 2 → 2 scattering amplitude and provide the exact result for the 2 → 2 S-matrix in the leading logarithmic approximation. These results can provide us with new insights into the properties of the theories deformed by irrelevant operators more general than the TT¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ T\overline{T} $$\end{document} deformation.
引用
收藏
相关论文
共 63 条
[1]  
Polyakov AM(1983) (1 + 1) Phys. Lett. B 131 121-undefined
[2]  
Wiegmann PB(1986) 1 Annals Phys. 167 227-undefined
[3]  
Faddeev LD(1978) 2 Nucl. Phys. B 146 63-undefined
[4]  
Reshetikhin NY(1979) = 8 Annals Phys. 120 253-undefined
[5]  
D’Adda A(2017) = 1 Nucl. Phys. B 915 363-undefined
[6]  
Lüscher M(2019) ℛ JHEP 02 085-undefined
[7]  
Di Vecchia P(2018)undefined JHEP 11 007-undefined
[8]  
Zamolodchikov AB(2018)undefined JHEP 04 010-undefined
[9]  
Zamolodchikov AB(2019)undefined JHEP 12 160-undefined
[10]  
Smirnov FA(2021)undefined JHEP 04 187-undefined