Generalization of Titchmarsh theorem in the deformed Hankel setting

被引:0
作者
Elgargati A. [1 ]
Loualid E.M. [2 ]
Daher R. [1 ]
机构
[1] Laboratory:Topology, Algebra, Geometry and Discrete Mathematics, Department of Mathematics and Informatics, Faculty of Sciences Aïn Chock, University of Hassan II, Maarif, Casablanca
[2] Laboratory of Engineering Sciences for Energy, National School of Applied Sciences of El Jadida, University Chouaib Doukkali, El Jadida
关键词
Deformed Hankel transform; Symmetric difference; Titchmarsh theorem;
D O I
10.1007/s11565-021-00379-1
中图分类号
学科分类号
摘要
In this paper, by using the generalized symmetric difference Δhm of order m and step h> 0 , we obtain a generalization of Titchmarsh’s Theorem for deformed Hankel transform. © 2021, The Author(s), under exclusive licence to The Author(s) under exclusive license to Università degli Studi di Ferrara.
引用
收藏
页码:243 / 252
页数:9
相关论文
共 9 条
  • [1] Titchmarsh E.S., Introduction to the Theory of Fourier Integrals, (1948)
  • [2] Achak A., Daher R., Dhaouadi L., Loualid E.L., An analog of Titchmarsh’s theorem for the q -Bessel transform, Ann. Univ. Ferrara, 65, pp. 1-13, (2019)
  • [3] Daher R., Hamma M., An analog of Titchmarsh’s theorem of Jacobi transform, Int. J. Math. Anal. (Ruse), 6, 17-20, pp. 975-981, (2012)
  • [4] Daher R., El Hamma M., El Houasni A., Titchmarsh’s theorem for the Bessel transform, Matematika, 28, 2, pp. 127-131, (2012)
  • [5] Achak A., Daher R., Safouane N., Titchmarsh theorems and K -functionals for the two-sided quaternion Fourier transform, Int. J. Eng. Appl. Phys., 1, 1, pp. 26-37, (2021)
  • [6] Platonov S.S., The Fourier transform of functions satisfying the Lipschitz condition on rank 1 symmetric spaces, Sibirsk. Mat. Zh., 46, 6, pp. 1374-1387, (2005)
  • [7] Younis M.S., Fourier transform of Lipschitz functions on the hyperbolic plane, Int. J. Math. Math. Sci., 21, 2, pp. 397-401, (1998)
  • [8] Ben Said S., A product formula and convolution structure for a k -Hankel transform on R, J. Math. Anal. Appl., 463, 2, pp. 1132-1146, (2018)
  • [9] Ben Said S., Boubatra M.A., Sifi M., On the deformed Besov-Hankelspaces, Opuscula Math., 40, 2, pp. 171-207, (2020)