Local spectrum, local spectral radius, and growth conditions

被引:0
作者
Heybetkulu Mustafayev
机构
[1] Van Yuzuncu Yil University,Department of Mathematics, Faculty of Science
来源
Monatshefte für Mathematik | 2021年 / 195卷
关键词
Operator; (Local) spectrum; (Local) spectral; Growth condition; Beurling algebra; 47A10; 47A11; 30D20;
D O I
暂无
中图分类号
学科分类号
摘要
Let X be a complex Banach space and x∈X.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x\in X.$$\end{document} Assume that a bounded linear operator T on X satisfies the condition etTx≤Cx1+tαα≥0,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \left\| e^{tT}x\right\| \le C_{x}\left( 1+\left| t\right| \right) ^{\alpha }\quad \left( \alpha \ge 0\right) , \end{aligned}$$\end{document}for all t∈R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t\in {\mathbb {R}} $$\end{document} and for some constant Cx>0.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C_{x}>0.$$\end{document} For the function f from the Beurling algebra Lω1R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_{\omega }^{1}\left( {\mathbb {R}} \right) $$\end{document} with the weight ωt=1+tα,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\omega \left( t\right) =\left( 1+\left| t\right| \right) ^{\alpha },$$\end{document} we can define an element in X, denoted by xf\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x_{f}$$\end{document}, which integrates etTx\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$e^{tT}x$$\end{document} with respect to f. We present a complete description of the elements xf\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x_{f}$$\end{document} in the case when the local spectrum of T at x consists of one point. In the case 0≤α<1,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0\le \alpha <1,$$\end{document} some estimates for the norm of Tx via the local spectral radius of T at x are obtained. Some applications of these results are also given.
引用
收藏
页码:717 / 741
页数:24
相关论文
共 12 条
[1]  
Albrecht E(1974)Funktionalkalküle in mehreren verä nderlichen für stetige lineare operatoren auf Banachräumen Manuscripta Math. 14 1-40
[2]  
Albrecht E(1978)On some classes of generalized spectral operators Arch. Math. 30 297-303
[3]  
Boyadzhiev KN(1987)Sinclair type inequalities for the local spectral radius and related topics Israel J. Math. 57 272-284
[4]  
Deddens JA(1978)Another description of nest algebras in Hilbert spaces operators Lecture Notes in Math. 693 77-86
[5]  
Gelfand I(1941)Zur theorie der charactere der abelschen topologischen gruppen Mat. Sb. 9 49-50
[6]  
Hille E(1944)On the theory of characters of groups and semi-groups in normed vector rings Proc. Nat. Acad. Sci. USA 30 58-60
[7]  
Gurarii VP(1979)Harmonic analysis in spaces with weight Trans. Moscow Math. Soc. 35 21-75
[8]  
Mustafayev HS(2007)Dissipative operators on Banach spaces J. Funct. Anal. 248 428-447
[9]  
Mustafayev HS(2015)Growth conditions for conjugate orbits of operators on Banach spaces J. Oper. Theory 74 281-306
[10]  
Roth PG(1983)Bounded orbits of conjugation, analytic theory Indiana Univ. Math. J. 32 491-509